4sin2theta-1=0
find theta and find cos2theta+tan2theta
Answers
Given:
- Value of 4sin²∅-1=0.
To Find:
- The value of cos²∅+tan²∅.
Formulae Used:
- (a+b)(a-b)=a²-b².
Answer:
Taking the given equation,
⇒4sin²∅ -1=0.
⇒(2sin²∅) -(1)²=0.
⇒ (2sin∅+1)(2sin∅-1)=0.
⇒sin∅ = ½ , -½ .
We would we solving taking positive value.
⇒sin∅ = ½
⇒ sin∅ = sin30°.
⇒∅ = 30°.
Putting ∅ = 30° .
= cos²∅ +tan²∅ .
= cos²30°+tan²30°.
= (√3/2)²+(1/√3)².
= 3/4 + 1/3 .
= 4+9/13 .
= 13/13
= 1 .
Hence the required answer is 1.
Answer:
Given:
Value of 4sin²0-1=0.
To Find:
. The value of cos²Ø+tan²0.
Formulae Used:
(a+b)(a-b)=a²-b².
Taking the given equation,
→ 4sin²0 -1=0.
> (2sin²0) -(1)²=0.
→ (2sinØ+1)(2sin-1)=0.
→ sin Ø= 1/2, -1/2.
We would we solving taking positive value.
→ sinØ = 12
→ sinØ = sin30°.
Putting Ø = 30°.
= cos²Ø+tan²0.
= cos²30°+tan²30°.
=(√3/2)²+(1/√3)².
= 3/4 + 1/3.
= 4+9/13.
= 13/13
= 1.
Hence the required answer is 1.
PLEASE MARK AS BRAINLIEST ANSWER.