4tan²60+5sin³30+cos²45/tan²45+2sin30 × cos 60
Answers
Answer:
13.625
Step-by-step explanation:
tan 60° =√3
∴ tan²60° = (√3)²=3
⇒4 tan²60°= 4*3=12
sin 30°=1/2
⇒5 sin³30°=5* (1/2)³
= 5* 1/8 = 5/8
2 sin 30°=1
cos 45°=1/√2
⇒cos²45° = 1/2
tan 45°=1
⇒tan²45°=1
cos 60°=1/2
∴4 tan²60+5 sin³30+cos²45/tan²45+2 sin 30 × cos 60
= 12+5/8+(1/2)/1+1*1/2
= 12+5/8+1/2+1/2
=13+5/8 =13.625
Solution:
We know that,
tan60° = √3
sin30° = 1/2
cos45° = 1/√2
tan45° = 1
cos60° = 1/2
∴ (4 tan²60° + 5 sin³30° + cos²45°) / (tan²45° + 2 sin30° × cos60°)
= {4 (√3)² + 5 (1/2)³ + (1/√2)²} / {(1)² + 2 (1/2) × 1/2}
= {(4 × 3) + (5 / 8) + (1 / 2)} / {1 + (2 / 2) × (1 / 2)}
= (12 + 5/8 + 1/2) / (1 + 1 × 1/2)
= {(96 + 5 + 4)/8} / (1 + 1/2)
= 105/8 * 3/2
= 315/16
Or,
4 tan²60° + 5 sin³30° + cos²45° / tan²45° + 2 sin30° × cos60°
= 4 (√3)² + 5 (1/2)³ + (1/√2)² / (1)² + 2 (1/2) × (1/2)
= 12 + 5/8 + (1/2) / 1 + 1 × 1/2
= 12 + 5/8 + 1/2 + 1 × 1/2
= 12 + 5/8 + 1/2 + 1/2
= 12 + 5/8 + 1
= (96 + 5 + 8)/8
= 109/8