Math, asked by sarvanmahal420, 10 months ago

4x^2+13x+3
find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficient​
plz solve​

Answers

Answered by Anonymous
9

S O L U T I O N :

We have p(x) = 4x² + 13x + 3

Zero of the polynomial p(x) = 0

Using quadratic formula :

As we know that given polynomial compared with ax² + bx + c;

  • a = 4
  • b = 13
  • c = 3

So;

\longrightarrow\tt{x=\dfrac{-b\pm\sqrt{b^{2}-4ac } }{2a} }\\\\\\\longrightarrow\tt{x=\dfrac{-13\pm\sqrt{(13)^{2} -4\times 4\times 3} }{2\times 4} }\\\\\\\longrightarrow\tt{x=\dfrac{-13\pm\sqrt{169-48} }{8} }\\\\\\\longrightarrow\tt{x=\dfrac{-13\pm\sqrt{121} }{8} }\\\\\\\longrightarrow\tt{x=\dfrac{-13\pm11}{8} }\\\\\\\longrightarrow\tt{x=\dfrac{-13+11}{8} \:\:Or\:\:x=\dfrac{-13-11}{8} }\\\\\\\longrightarrow\tt{x=\cancel{\dfrac{-2}{8}} \:\:Or\:\:x=\cancel{\dfrac{-24}{8} }}\\\\\\

\longrightarrow\bf{x=-\dfrac{1}{4} \:\:\:Or\:\:\:x=-3}

∴ The α = -1/4 and β = -3 are the zeroes of the polynomial.

Now;

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha +\beta =\dfrac{-b} {a}=\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }\\\\\\\longrightarrow\tt{-\dfrac{1}{4} +(-3)=\dfrac{-13}{4} }\\\\\\\longrightarrow\tt{-\dfrac{1}{4}-3=\dfrac{-13}{4}}\\\\\\\longrightarrow\tt{\dfrac{-1-12}{4} =\dfrac{-13}{4}}\\\\\\\longrightarrow\bf{\dfrac{-13}{4} =\dfrac{-13}{4} }

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\longrightarrow\tt{\alpha \times \beta =\dfrac{c} {a}=\dfrac{Constant\:term}{Coefficient\:of\:x^{2} } }\\\\\\\longrightarrow\tt{-\dfrac{1}{4} \times (-3)=\dfrac{3}{4} }\\\\\\\ \longrightarrow\bf{\dfrac{3}{4} =\dfrac{3}{4} }

Thus;

Relationship between zeroes and coefficient is verified .

Answered by Anonymous
0

Given ,

The polynomial is 4(x)² + 13x + 3

By middle term splitting method ,

 \hookrightarrow 4 {(x)}^{2}  + 13x + 3 = 0 \\  \\  \hookrightarrow</p><p>4{(x)}^{2}+ 12x + x + 3 = 0 \\  \\  \hookrightarrow</p><p>4x(x + 3) + 1(x + 3) = 0 \\  \\  \hookrightarrow</p><p>(4x + 1)(x + 3) = 0 \\  \\  \hookrightarrow</p><p>x =  - \frac{1}{4}  \:  \: or \:  \: x =  - 3

 \therefore \sf \underline{The \:  zeroes \:  of  \: polynomial  \: are   -  \frac{1}{4} \: and   - 3 }

We know that , the relationship between zeroes and coefficient of polynomial is given by

 \star \:  \sf \fbox{ \alpha  +  \beta  =  -  \frac{b}{a} }

Thus ,

 \mapsto \frac{ - 1}{4}  +(  - 3) =   - \frac{13}{4}  \\  \\  \mapsto -  \frac{ 13}{4}  =  -  \frac{13}{4}

And

 \star \:   \sf \fbox{ \alpha   \times \beta  =  \frac{c}{a}}

Thus ,

 \mapsto \frac{ - 1}{4}  \times ( - 3) =  \frac{3}{4}  \\  \\ \mapsto  \frac{3}{4}  =  \frac{3}{4}

Hence verified

Similar questions