Math, asked by vinayprabhas364, 9 months ago

4x^2 - 3x - 5 = 0 completing the square method

Answers

Answered by BrainlyConqueror0901
29

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=\pm\frac{\sqrt{89}+3}{8}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 4 {x}^{2}  - 3x - 5 = 0 \\  \\  \red{\underline \bold{To \: Find:}}\\  \tt:  \implies Value \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  {4x}^{2}   - 3x - 5 = 0 \\  \\  \tt \circ \: Dividing \: both \: side \: by \: coefficient \: of \:  {x}^{2}  \\ \tt: \implies  \frac{4 {x}^{2} }{4}  -  \frac{3x}{4}  -  \frac{5}{4}  = 0 \\  \\  \tt: \implies  {x}^{2}  -  \frac{3x}{4}  -  \frac{5}{4}  = 0 \\  \\  \tt \circ \: Adding \: ( \frac{b}{2a} )^{2}   \: both \: side=  (\frac{  - \frac{3}{4} }{2 \times 1} )^{2}  =  \frac{9}{64}  \\  \\ \tt: \implies   {x}^{2}  -  \frac{3x}{4}  +  \frac{9}{64}  -  \frac{5}{4}  =  \frac{9}{64}  \\  \\ \tt: \implies  ({x -  \frac{3}{8}) }^{2}  =  \frac{9}{64}  +  \frac{5}{4}  \\  \\ \tt: \implies  {(x -  \frac{3}{8} )}^{2}  =  \frac{9 + 80}{64}  \\  \\ \tt: \implies  {(x -  \frac{3}{8}) }^{2}  =  \frac{89}{64}  \\  \\ \tt: \implies  x -  \frac{3}{8}  =   \sqrt{ \frac{89}{64} }  \\  \\ \tt: \implies x =   \pm\frac{ \sqrt{89} }{8}  +  \frac{3}{8}  \\  \\ \tt: \implies x =   \pm\frac{ \sqrt{89}  + 3}{8}

Answered by AdorableMe
89

Given polynomial:-

\displaystyle{4x^2-3x-5=0}

To find:-

\textsf{The roots of the given polynomial by "completing the square method".}

Solution:-

\textsf{Dividing the equation by 4, we get:}\\\\\displaystyle{x^2-\frac{3x}{4}-\frac{5}{4}=0  }\\\\\displaystyle{\implies x^2-\frac{3x}{4} =\frac{5}{4} }

\textsf{Multiplying }(\frac{3}{8} )^2 \textsf{ to both the sides;}\\\\\displaystyle{x^2-\frac{3x}{4}+(\frac{3}{8} )^2=\frac{5}{4}  +(\frac{3}{8} )^2}\\\\\displaystyle{\implies x^2(-2*x*\frac{3}{8})+(\frac{3}{8} )^2=\frac{5}{4} +\frac{9}{64}  }\\\\\displaystyle{\implies (x-\frac{3}{8} )^2=\±\frac{80+9}{64 } }\\\\\displaystyle{\implies x-\frac{3}{8}=\±\sqrt{\frac{89}{64} }  }\\\\\displaystyle{\implies x=\±\frac{\sqrt{89} }{8}+\frac{3}{8}  }\\\\

\displaystyle{\boxed{\implies x=\±\frac{\sqrt{89}+3 }{8} }}

Similar questions