Math, asked by lakshmimanoram, 4 days ago

[4x+5]2 + [4x-5]2
pls answer fast

Answers

Answered by snakequeen576
0

Step-by-step explanation:

(4x + 5)² - (4x - 5)²

= (4x + 5 + 4x - 5)(4x + 5 - 4x + 5)

... a² - b² = (a + b)(a - b)

= (8x)(5)

= 40x

MARK ME AS BRAINLIEST ✨

Answered by mathdude500
2

Appropriate Question :-

Simplify :

\rm \:  {(4x + 5)}^{2} +  {(4x - 5)}^{2}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {(4x + 5)}^{2} +  {(4x - 5)}^{2}  \\

We know,

\boxed{\rm{  \: {(a + b)}^{2} +  {(a - b)}^{2} = 2( {a}^{2} +  {b}^{2}) \:  \: }} \\

So, here

\rm \: a \:  =  \: 4x \\

\rm \: b \:  =  \: 5 \\

So, on substituting the values, we get

\rm \:  =  \: 2[ {(4x)}^{2} +  {5}^{2}] \\

\rm \:  =  \: 2[ 16 {x}^{2}  + 25] \\

\rm \:  =  \:  {32x}^{2} + 50 \\

Hence,

\rm\implies \:\boxed{\rm{  \:{(4x + 5)}^{2} +  {(4x - 5)}^{2}   =  \:  {32x}^{2} + 50 \: }} \\

\rule{190pt}{2pt}

\begin{gathered} \colorbox{powderblue}{ \boxed{ \begin{array}{l} \underline{\underline{ \color{orang} \text { \bf \: Additional \: information }}} \end{array}}}\end{gathered}

\boxed{\rm{  \: {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \: }} \\

\boxed{\rm{  \: {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2} \: }} \\

\boxed{\rm{  \: {(x + y)}^{2} -  {(x - y)}^{2}  = 4xy \: }} \\

\boxed{\rm{  \: {x}^{2} -  {y}^{2}  = (x + y)(x - y) \:  \: }} \\

Similar questions