Math, asked by dakshgirdhar11, 1 month ago

5.
1
lim,-- sin
is equal to
1
1
question in pic
if you type anything u will be reported​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim _{x \rarr1} \sin(x -  \frac{1}{ {x}^{ \frac{1}{3} }  - 1} )  \\

  =  \sin \{ \lim _{x \rarr1}(x -  \frac{1}{ {x}^{ \frac{1}{3} }  - 1}  )\} \\

  =  \sin \{ \lim _{x \rarr1}(  \frac{ {x}^{ \frac{4}{3} } - x - 1 }{ {x}^{ \frac{1}{3} }  - 1}  )\} \\

Using l'hospital's rule,

  =  \sin \{ \lim _{x \rarr1}(  \frac{  \frac{4}{3} {x}^{ \frac{1}{3} } - 1 }{  \frac{1}{3} {x}^{  - \frac{2}{3} }  }  )\} \\

  =  \sin \{ \frac{  \frac{4}{3}- 1 }{  \frac{1}{3}  }\} \\

  =  \sin \{ \frac{  \frac{4 - 3}{3}}{  \frac{1}{3}  }\} \\

  =  \sin \{ \frac{  \frac{1}{3}}{  \frac{1}{3}  }\} \\

  =  \sin \{1\} \\

Similar questions