Math, asked by rajsharma69122, 1 month ago

( 5^ -1 xy^ 2 5^ 2 xy^ -4 )^ 1 2 * ( 5^ -1 xy^ 3 5^ 3 x1^ -5 )^ -5/2​

Answers

Answered by Mister36O
2

Step-by-step Explanation :

{ \to \:  \:  \bf(5  ^ { -1  }  xy  ^ { 2  }  5  ^ { 2  }  xy  ^ { -4  }  )  ^ { 1  }  2 \times  (5  ^ { -1  }  xy  ^ { 3  }  5  ^ { 3  }  x1  ^ { -5  }  )  ^ { - \frac{ 5  }{ 2  }    }}

{ \to \:  \:  \tt\left(5^{1}xy^{2}xy^{-4}\right)^{1}\times 2\times \left(5^{-1}xy^{3}\times 5^{3}x\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: \left(5^{1}x^{2}y^{2}y^{-4}\right)^{1}\times 2\times \left(5^{-1}xy^{3}\times 5^{3}x\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: \left(5^{1}x^{2}y^{-2}\right)^{1}\times 2\times \left(5^{-1}xy^{3}\times 5^{3}x\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: \left(5^{1}x^{2}y^{-2}\right)^{1}\times 2\times \left(5^{2}xy^{3}x\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: \left(5^{1}x^{2}y^{-2}\right)^{1}\times 2\times \left(5^{2}x^{2}y^{3}\times 1^{-5}\right)^{-\frac{5}{2}} }

{ \tt \to \:  \: \left(5x^{2}y^{-2}\right)^{1}\times 2\times \left(5^{2}x^{2}y^{3}\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \:5x^{2}y^{-2}\times 2\times \left(5^{2}x^{2}y^{3}\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times \left(5^{2}x^{2}y^{3}\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times \left(25x^{2}y^{3}\times 1^{-5}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times \left(25x^{2}y^{3}\times 1\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times \left(25x^{2}y^{3}\right)^{-\frac{5}{2}} }

 \tt {\to \:  \: 10x^{2}y^{-2}\times 25^{-\frac{5}{2}}\left(x^{2}\right)^{-\frac{5}{2}}\left(y^{3}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times 25^{-\frac{5}{2}}x^{-5}\left(y^{3}\right)^{-\frac{5}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times 25^{-\frac{5}{2}}x^{-5}y^{-\frac{15}{2}} }

 \tt{ \to \:  \: 10x^{2}y^{-2}\times \left(\frac{1}{3125}\right)x^{-5}y^{-\frac{15}{2}} }

 \tt {\to \:  \: \frac{2}{625}x^{2}y^{-2}x^{-5}y^{-\frac{15}{2}} }

 \tt{ \to \:  \: \frac{2}{625}x^{-3}y^{-2}y^{-\frac{15}{2}} }

 \underline{ \boxed{\bf{ \to \:  \: \frac{2}{625}x^{-3}y^{-\frac{19}{2}} }}} \:  \:  \bigstar

.°. The equation is solved now !!

Similar questions