5+10+15+ to +5n = 5n(n+1)/2 for k+1
Answers
Answer:
.
Step-by-step explanation:
The given statement is
5+10+15+...+5n=\frac{5n(n+1)}{2}5+10+15+...+5n=
2
5n(n+1)
For n = 1
\begin{lgathered}5=\frac{5\cdot1(1+1)}{2}\\\\5=5\cdot1\\\\5=5=>\text{ True}\end{lgathered}
5=
2
5⋅1(1+1)
5=5⋅1
5=5=> True
Hence, the given statement is true for n = 1
Let the given statement is true for n = k
So, we have
P(k)=5+10+15+...+5k-5+5k=\frac{5k(k+1)}{2}P(k)=5+10+15+...+5k−5+5k=
2
5k(k+1)
Now, we have to prove that the statement is true for n = k+1
Substitute n = k+1
\begin{lgathered}5+10+15+...+\frac{5(k+1)(k+1+1)}{2}\\\\5+10+15+...+\frac{(5k+5)(k+2)}{2}\\\\5+10+15+...+\frac{5k^2+15k+10}{2}\\\\5+10+15+...+\frac{5k(k+3)}{2}+5\\\\5+10+15+...+\frac{5k(k+1}{2}+\frac{10k}{2}+5\\\\5+10+15+...+\frac{5k(k+1}{2}+5k+5\\\\P(k)+5(k+1)\end{lgathered}
5+10+15+...+
2
5(k+1)(k+1+1)
5+10+15+...+
2
(5k+5)(k+2)
5+10+15+...+
2
5k
2
+15k+10
5+10+15+...+
2
5k(k+3)
+5
5+10+15+...+
2
5k(k+1
+
2
10k
+5
5+10+15+...+
2
5k(k+1
+5k+5
P(k)+5(k+1)
It means that it is true for n = k+1 as well
Hence, from mathematical induction, we can say that
5+10+15+...+5n=\frac{5n(n+1)}{2}5+10+15+...+5n=
2
5n(n+1)
Answer:
school me jakar sir ko pucho