5√(243)-3 heeeelpppp mee
Answers
Answer:
hope this answer will help you and mark me as brainliest
The value of the expression is \sqrt[5]{(243)^{-3}}=\frac{1}{27}
5
(243)
−3
=
27
1
.
Step-by-step explanation:
Given : Expression \sqrt[5]{(243)^{-3}}
5
(243)
−3
To find : The value of the expression ?
Solution :
We know that, 3^5=2433
5
=243
Re-write the expression as,
\begin{gathered}\sqrt[5]{(243)^{-3}}=((243)^{-3})^{\frac{1}{5}}\\\\\sqrt[5]{(243)^{-3}}=(243)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3^5)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{\frac{-3\times 5}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{-3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{3^3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{27}\\\\\end{gathered}
5
(243)
−3
=((243)
−3
)
5
1
5
(243)
−3
=(243)
5
−3
5
(243)
−3
=(3
5
)
5
−3
5
(243)
−3
=(3)
5
−3×5
5
(243)
−3
=(3)
−3
5
(243)
−3
=
3
3
1
5
(243)
−3
=
27
1
Therefore, the value of the expression is \sqrt[5]{(243)^{-3}}=\frac{1}{27}
5
(243)
−3
=
27
1
.
Answer:
zero is your answer. . . . .