Math, asked by hettewar0207, 4 months ago

5√(243)-3 heeeelpppp mee​

Answers

Answered by Mohanapratika
0

Answer:

hope this answer will help you and mark me as brainliest

The value of the expression is \sqrt[5]{(243)^{-3}}=\frac{1}{27}

5

(243)

−3

=

27

1

.

Step-by-step explanation:

Given : Expression \sqrt[5]{(243)^{-3}}

5

(243)

−3

To find : The value of the expression ?

Solution :

We know that, 3^5=2433

5

=243

Re-write the expression as,

\begin{gathered}\sqrt[5]{(243)^{-3}}=((243)^{-3})^{\frac{1}{5}}\\\\\sqrt[5]{(243)^{-3}}=(243)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3^5)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{\frac{-3\times 5}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{-3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{3^3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{27}\\\\\end{gathered}

5

(243)

−3

=((243)

−3

)

5

1

5

(243)

−3

=(243)

5

−3

5

(243)

−3

=(3

5

)

5

−3

5

(243)

−3

=(3)

5

−3×5

5

(243)

−3

=(3)

−3

5

(243)

−3

=

3

3

1

5

(243)

−3

=

27

1

Therefore, the value of the expression is \sqrt[5]{(243)^{-3}}=\frac{1}{27}

5

(243)

−3

=

27

1

.

Answered by marvelyash21347
1

Answer:

zero is your answer. . . . .

Similar questions