Math, asked by ahmedmoiz2867, 17 days ago

5 29. The sum of the first 20 terms in progression is 200 and the sum of the next 10 terms is arithmetic 400. Find the fortieth term.A) 49 C) 69 B) 59 D) 79 ​

Answers

Answered by gausia8080
4

Given,

The sum of the first 20 terms in progression is 200 and the sum of the next 10 terms is arithmetic 400.

Formula,

S_{n}=\frac{n}{2}[2a+(n-1)d]

Step1:

n=20, S_{n} =200

200=\frac{20}{10}[2a+(20-1)d]\\10[2a+19d]=200\\2a+19d=20--------(1)

Step2:

Sum of the next 10 terms

So, total terms are 30

\frac{30}{2}[2a+29d]-\frac{20}{2}[2a+19d]=400\\15[2a+29d]-10[2a+19d]=400\\5[(3(2a+29d))-2(2a+19d)]=400\\6a+87d-4a-38d=80\\2a+49d=80--------(2)

Subtract equation (2)to equation(1)

2a+49d-2a-19d=80-20\\30d=60\\d=2

Substitute d=2 in equation (2)

2a+49\times2=80\\2a+98=80\\2a=80-98\\2a=18\\a=-9

T_{40}=a+(40-1)d

T_{40}=-9+39\times2\\T_{40}=-9+78\\T_{40}=69

Therefore, the fortieth term is 69.

Similar questions