Physics, asked by priyanshu12131, 8 months ago

∫⁵ (2x²+3x+2) dx =?
²
Please solve this question.​

Answers

Answered by Anonymous
20

Answer:

 \boxed{\mathfrak{\int\limits^5_2 ({2x^2+3x+2}) \, dx = 115.5}}

Explanation:

 \sf Compute \:  the \:  de finite \:  integral: \\  \sf \implies \int\limits^5_2 ({2x^2+3x+2}) \, dx  \\  \\  \sf Integrate  \: the  \: sum  \: term \:  by \:  term  \: and \\  \sf factor \:  out   \:  constants: \\  \sf \implies 2 \int\limits^5_2  {x}^{2}  \, dx + 3 \int\limits^5_2  x  \, dx + 2 \int\limits^5_2  1  \, dx

  \sf Apply \:  the \:  fundamental  \: theorem  \: of \:  calculus.  \\  \sf The \:  antiderivative  \: of   \: {x}^{2} \:  is \:  \frac{ {x}^{3} }{3}  :  \\  \\  \sf \implies   \frac{2 {x}^{3} }{3} \Big|_2^5 +  3 \int\limits^5_2  x  \, dx + 2 \int\limits^5_2  1  \, dx \\  \\  \sf Evaluate  \: the  \: antiderivative  \: at \:  the \:  limits  \: and  \\  \sf  subtract. \\  \sf  \frac{2 {x}^{3} }{3} \Big|_2^5 =  \frac{2 \times  {5}^{3} }{3}  -  \frac{2 \times  {2}^{3} }{3}  = 78 :  \\  \\  \sf \implies 78 + 3 \int\limits^5_2  x  \, dx + 2 \int\limits^5_2  1  \, dx

 \sf Apply \:  the \:  fundamental  \: theorem  \: of \:  calculus.  \\  \sf The \:  antiderivative  \: of   \: x \:  is \:  \frac{ {x}^{2} }{2}  :  \\  \\  \sf \implies  78 +  \frac{3 {x}^{2} }{2} \Big|_2^5  + 2 \int\limits^5_2  1  \, dx \\  \\  \sf Evaluate  \: the  \: antiderivative  \: at \:  the \:  limits  \: and  \\  \sf  subtract. \\  \sf  \frac{3 {x}^{2} }{2} \Big|_2^5 =  \frac{3 \times  {5}^{2} }{2}  -  \frac{3 \times  {2}^{2} }{2}  =  \frac{63}{2}  :  \\  \\  \sf \implies 78 +  \frac{63}{2} + 2 \int\limits^5_2  1  \, dx

 \sf Apply \:  the \:  fundamental  \: theorem  \: of \:  calculus.  \\  \sf The \:  antiderivative  \: of   \: 1 \:  is \:  x  :  \\  \\  \sf \implies  78 + \frac{63}{2}   +  2x \Big|_2^5   \\  \\  \sf Evaluate  \: the  \: antiderivative  \: at \:  the \:  limits  \: and  \\  \sf  subtract. \\  \sf 2x \Big|_2^5 = 2 \times 5 - 2 \times 2 = 6  :  \\  \\  \sf \implies 78 +  \frac{63}{2} + 6 \\  \\  \sf  \implies  \frac{156  + 63 + 12}{2}  \\  \\  \sf \implies \frac{231}{2}   \\  \\  \sf \implies 115.5

Answered by quotar27
1

Answer:

∫⁵ (2x²+3x+2) dx = 2x³/3 + 3x²/2 + 2x (from 2 to 5)

²

= [(2×5³)/3 + (3×5²)/2 + 2×5] - [(2×2³)/3 + (3×2²)/2 + 2×2]

By solving we get:

= 231/2

Similar questions