5 - (3a^ - 2a) (6 - 3a^ + 2a)
Answers
Answered by
37
Answer :
Now,
5 - (3a² - 2a) (6 - 3a² + 2a)
= 5 - x (6 - x), let 3a² - 2a = x
= 5 - 6x + x²
= x² - 6x + 5
= x² - x - 5x + 5
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
= (3a² - 2a - 1) (3a² - 2a - 5),
since x = 3a² - 2a
= (3a² - 3a + a - 1) (3a² + 3a - 5a - 5)
= {3a (a - 1) + 1 (a - 1)} {3a (a + 1) - 5 (a + 1)}
= (a - 1) (3a + 1) (a + 1) (3a - 5),
which is the required factorization.
#MarkAsBrainliest
Now,
5 - (3a² - 2a) (6 - 3a² + 2a)
= 5 - x (6 - x), let 3a² - 2a = x
= 5 - 6x + x²
= x² - 6x + 5
= x² - x - 5x + 5
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
= (3a² - 2a - 1) (3a² - 2a - 5),
since x = 3a² - 2a
= (3a² - 3a + a - 1) (3a² + 3a - 5a - 5)
= {3a (a - 1) + 1 (a - 1)} {3a (a + 1) - 5 (a + 1)}
= (a - 1) (3a + 1) (a + 1) (3a - 5),
which is the required factorization.
#MarkAsBrainliest
adi11746:
in the question there is (3a2-2a) and (-3a2+2a) how u tooked both of them as x
Answered by
8
Your question needs a correction,
Correct question, 5-(3a²-2a)(6-3a²+2a)
××××××××××××××××××××××××
5 - (3a² - 2a) [ 6 - (3a² - 2a)]
Let, 3a² - 2a = x
5 - x(6 - x)
5 - 6x + x²
5 - (5 + 1)x + x²
5 - 5x - x + x²
5(1 - x) - x(1 - x)
(1 - x) (5 - x)
(1 - 3a² + 2a) (5 - 3a² + 2a)
( -3a² + 2a + 1)(-3a² + 2a + 5)
(-3a² + {3 - 1}a + 1) (-3a² + {5 - 3}a + 5)
( -3a² + 3a - a + 1)(-3a² + 5a - 3a + 5)
[ -3a(a - 1)-1(a - 1)] [ -a(3a -5) -1(3a - 5)]
(-3a - 1)(a - 1)(3a - 5)(-a - 1)
I hope this help you
(-:
Correct question, 5-(3a²-2a)(6-3a²+2a)
××××××××××××××××××××××××
5 - (3a² - 2a) [ 6 - (3a² - 2a)]
Let, 3a² - 2a = x
5 - x(6 - x)
5 - 6x + x²
5 - (5 + 1)x + x²
5 - 5x - x + x²
5(1 - x) - x(1 - x)
(1 - x) (5 - x)
(1 - 3a² + 2a) (5 - 3a² + 2a)
( -3a² + 2a + 1)(-3a² + 2a + 5)
(-3a² + {3 - 1}a + 1) (-3a² + {5 - 3}a + 5)
( -3a² + 3a - a + 1)(-3a² + 5a - 3a + 5)
[ -3a(a - 1)-1(a - 1)] [ -a(3a -5) -1(3a - 5)]
(-3a - 1)(a - 1)(3a - 5)(-a - 1)
I hope this help you
(-:
Similar questions