5^3x+1÷25=125 pls answer this question
Answers
Answer:
Evaluate the exponent
53+125=125
{\color{#c92786}{5^{3}}}x+\frac{1}{25}=12553x+251=125
125+125=125
{\color{#c92786}{125}}x+\frac{1}{25}=125125x+251=125
2
Subtract
125
\frac{1}{25}251
from both sides of the equation
125+125=125
125x+\frac{1}{25}=125125x+251=125
125+125−125=125−125
125x+\frac{1}{25}{\color{#c92786}{-\frac{1}{25}}}=125{\color{#c92786}{-\frac{1}{25}}}125x+251−251=125−251
3
Simplify
Subtract the numbers
Subtract the numbers
125=312425
125x=\frac{3124}{25}125x=253124
4
Divide both sides of the equation by the same term
125=312425
125x=\frac{3124}{25}125x=253124
125125=312425125
\frac{125x}{{\color{#c92786}{125}}}=\frac{\frac{3124}{25}}{{\color{#c92786}{125}}}125125x=125253124
5
Simplify
Cancel terms that are in both the numerator and denominator
Divide the numbers
=31243125
x=\frac{3124}{3125}x=