Physics, asked by 1701siyagandhi, 9 months ago

5.
A ball is thrown at an angle of 30 degree to the horizontal. Ii falls on the ground at a distance of 90 m.
If the ball is thrown with the same initial speed at an angle 30° to the vertical, it will fall on the
ground at a distance of
(A)120 m
(B)27m
(C)90 m
(D)30 m​

Answers

Answered by TheVenomGirl
14

GivEn :

  • At 30° ball is thrown upwards .

  • Distance on which the ball falls = 90 m

  • The ball is thrown with the same initial velocity = 30° to the vertical.

 \\  \\

To find :

  • The distance in which the ball falls on the ground = ?

 \\  \\

SoluTion :

To calculate the distance, we should know the appropriate formula for it!

✩ Distance covered by the ball is given as,

\star \: { \boxed { \sf{ \purple{\: x =  \dfrac{ {v}^{2} \sin 2 \theta }{g} }}}}

where,

  • v = velocity at which the ball is thrown

  • g = gravitational force

Now,

According to the question, ball is thrown at 30° angle to the horizontal, so,

  • x = 90 m [Given]

  • θ = 30°

Substituting the values,

\sf \dashrightarrow \:  \:  \: x =  \dfrac{ {v}^{2} \sin 2 \theta }{g} \\  \\  \\  \\

\sf \dashrightarrow \:  \:  \: 90=  \dfrac{ {v}^{2} \sin 2  \times 30 }{10} \\  \\  \\  \\

\sf \dashrightarrow \:  \:  \: 900=   {v}^{2} \sin 60 \\   \\  \\  \\

\sf \dashrightarrow \:  \:  \: 900=   {v}^{2}  \dfrac{ \sqrt{3} }{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \bigg( \sin  {60}^{ \circ} =  \dfrac{  \sqrt{3} }{2} \bigg)}     \\   \\  \\  \\

\sf \dashrightarrow \:  \:  \: 1800=   {v}^{2}  \sqrt{3} \\  \\  \\  \\

\sf \dashrightarrow \:  \:  \:  {v}^{2}  =  \dfrac{1800}{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - eq(1). \\  \\  \\  \\

Now,

Distance covered by the ball on the ground :

\sf  : \implies \:  \:  \: x =  \dfrac{ {v}^{2} \sin 2 \theta }{g} \\  \\  \\  \\

\sf  : \implies \:  \:  \: x =  \dfrac{ { \frac{1800}{ \sqrt{3} } } \times  \sin 2  \times 30 }{10} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg(from \: eq(1). \bigg) \\  \\  \\  \\

\sf  : \implies \:  \:  \: x =  \dfrac{ { \frac{1800}{ \sqrt{3} } } \times  \sin 60 }{10}  \\  \\  \\  \\

\sf  : \implies \:  \:  \: x =  \dfrac{ { \frac{1800}{ \sqrt{3} } } \times   \frac{ \sqrt{3 } }{2}  }{10}   \\  \\  \\  \\

\sf  : \implies \:  \:  \: x =  \dfrac{ 900 }{10}   \\  \\  \\  \\

\sf  : \implies \:  \:  \: { \underline{ \boxed{ \sf{ \red{x =  90 \: m}}}}} \:  \bigstar \\  \\

Therefore, the ball will fall on the ground at distance of 90 m.

━━━━━━━━━━━━━━━━

Answered by veerpa2830
0

Explanation:

GivEn :

At 30° ball is thrown upwards .

Distance on which the ball falls = 90 m

The ball is thrown with the same initial velocity = 30° to the vertical.

\begin{gathered} \\ \\ \end{gathered}

To find :

The distance in which the ball falls on the ground = ?

\begin{gathered} \\ \\ \end{gathered}

SoluTion :

To calculate the distance, we should know the appropriate formula for it!

✩ Distance covered by the ball is given as,

\star \: { \boxed { \sf{ \purple{\: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} }}}}⋆

x=

g

v

2

sin2θ

where,

v = velocity at which the ball is thrown

g = gravitational force

Now,

According to the question, ball is thrown at 30° angle to the horizontal, so,

x = 90 m [Given]

θ = 30°

Substituting the values,

\begin{gathered}\sf \dashrightarrow \: \: \: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} \\ \\ \\ \\ \end{gathered}

⇢x=

g

v

2

sin2θ

\begin{gathered}\sf \dashrightarrow \: \: \: 90= \dfrac{ {v}^{2} \sin 2 \times 30 }{10} \\ \\ \\ \\ \end{gathered}

⇢90=

10

v

2

sin2×30

\begin{gathered}\sf \dashrightarrow \: \: \: 900= {v}^{2} \sin 60 \\ \\ \\ \\ \end{gathered}

⇢900=v

2

sin60

\begin{gathered}\sf \dashrightarrow \: \: \: 900= {v}^{2} \dfrac{ \sqrt{3} }{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \bigg( \sin {60}^{ \circ} = \dfrac{ \sqrt{3} }{2} \bigg)} \\ \\ \\ \\ \end{gathered}

⇢900=v

2

2

3

(sin60

=

2

3

)

\begin{gathered}\sf \dashrightarrow \: \: \: 1800= {v}^{2} \sqrt{3} \\ \\ \\ \\ \end{gathered}

⇢1800=v

2

3

\begin{gathered}\sf \dashrightarrow \: \: \: {v}^{2} = \dfrac{1800}{ \sqrt{3} } \: \: \: \: \: \: \: \: \: \: \: - eq(1). \\ \\ \\ \\ \end{gathered}

⇢v

2

=

3

1800

−eq(1).

Now,

✩ Distance covered by the ball on the ground :

\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} \\ \\ \\ \\ \end{gathered}

:⟹x=

g

v

2

sin2θ

\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \sin 2 \times 30 }{10} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bigg(from \: eq(1). \bigg) \\ \\ \\ \\ \end{gathered}

:⟹x=

10

3

1800

×sin2×30

(fromeq(1).)

\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \sin 60 }{10} \\ \\ \\ \\ \end{gathered}

:⟹x=

10

3

1800

×sin60

\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \frac{ \sqrt{3 } }{2} }{10} \\ \\ \\ \\ \end{gathered}

:⟹x=

10

3

1800

×

2

3

\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ 900 }{10} \\ \\ \\ \\ \end{gathered}

:⟹x=

10

900

\begin{gathered}\sf : \implies \: \: \: { \underline{ \boxed{ \sf{ \red{x = 90 \: m}}}}} \: \bigstar \\ \\ \end{gathered}

:⟹

x=90m

Therefore, the ball will fall on the ground at distance of 90 m.

━━━━━━━━━━━━━

Similar questions