5.
A ball is thrown at an angle of 30 degree to the horizontal. Ii falls on the ground at a distance of 90 m.
If the ball is thrown with the same initial speed at an angle 30° to the vertical, it will fall on the
ground at a distance of
(A)120 m
(B)27m
(C)90 m
(D)30 m
Answers
GivEn :
- At 30° ball is thrown upwards .
- Distance on which the ball falls = 90 m
- The ball is thrown with the same initial velocity = 30° to the vertical.
To find :
- The distance in which the ball falls on the ground = ?
SoluTion :
To calculate the distance, we should know the appropriate formula for it!
✩ Distance covered by the ball is given as,
where,
- v = velocity at which the ball is thrown
- g = gravitational force
Now,
According to the question, ball is thrown at 30° angle to the horizontal, so,
- x = 90 m [Given]
- θ = 30°
Substituting the values,
Now,
✩ Distance covered by the ball on the ground :
Therefore, the ball will fall on the ground at distance of 90 m.
━━━━━━━━━━━━━━━━
Explanation:
GivEn :
At 30° ball is thrown upwards .
Distance on which the ball falls = 90 m
The ball is thrown with the same initial velocity = 30° to the vertical.
\begin{gathered} \\ \\ \end{gathered}
To find :
The distance in which the ball falls on the ground = ?
\begin{gathered} \\ \\ \end{gathered}
SoluTion :
To calculate the distance, we should know the appropriate formula for it!
✩ Distance covered by the ball is given as,
\star \: { \boxed { \sf{ \purple{\: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} }}}}⋆
x=
g
v
2
sin2θ
where,
v = velocity at which the ball is thrown
g = gravitational force
Now,
According to the question, ball is thrown at 30° angle to the horizontal, so,
x = 90 m [Given]
θ = 30°
Substituting the values,
\begin{gathered}\sf \dashrightarrow \: \: \: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} \\ \\ \\ \\ \end{gathered}
⇢x=
g
v
2
sin2θ
\begin{gathered}\sf \dashrightarrow \: \: \: 90= \dfrac{ {v}^{2} \sin 2 \times 30 }{10} \\ \\ \\ \\ \end{gathered}
⇢90=
10
v
2
sin2×30
\begin{gathered}\sf \dashrightarrow \: \: \: 900= {v}^{2} \sin 60 \\ \\ \\ \\ \end{gathered}
⇢900=v
2
sin60
\begin{gathered}\sf \dashrightarrow \: \: \: 900= {v}^{2} \dfrac{ \sqrt{3} }{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \bigg( \sin {60}^{ \circ} = \dfrac{ \sqrt{3} }{2} \bigg)} \\ \\ \\ \\ \end{gathered}
⇢900=v
2
2
3
(sin60
∘
=
2
3
)
\begin{gathered}\sf \dashrightarrow \: \: \: 1800= {v}^{2} \sqrt{3} \\ \\ \\ \\ \end{gathered}
⇢1800=v
2
3
\begin{gathered}\sf \dashrightarrow \: \: \: {v}^{2} = \dfrac{1800}{ \sqrt{3} } \: \: \: \: \: \: \: \: \: \: \: - eq(1). \\ \\ \\ \\ \end{gathered}
⇢v
2
=
3
1800
−eq(1).
Now,
✩ Distance covered by the ball on the ground :
\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ {v}^{2} \sin 2 \theta }{g} \\ \\ \\ \\ \end{gathered}
:⟹x=
g
v
2
sin2θ
\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \sin 2 \times 30 }{10} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bigg(from \: eq(1). \bigg) \\ \\ \\ \\ \end{gathered}
:⟹x=
10
3
1800
×sin2×30
(fromeq(1).)
\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \sin 60 }{10} \\ \\ \\ \\ \end{gathered}
:⟹x=
10
3
1800
×sin60
\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ { \frac{1800}{ \sqrt{3} } } \times \frac{ \sqrt{3 } }{2} }{10} \\ \\ \\ \\ \end{gathered}
:⟹x=
10
3
1800
×
2
3
\begin{gathered}\sf : \implies \: \: \: x = \dfrac{ 900 }{10} \\ \\ \\ \\ \end{gathered}
:⟹x=
10
900
\begin{gathered}\sf : \implies \: \: \: { \underline{ \boxed{ \sf{ \red{x = 90 \: m}}}}} \: \bigstar \\ \\ \end{gathered}
:⟹
x=90m
★
Therefore, the ball will fall on the ground at distance of 90 m.
━━━━━━━━━━━━━