α+β=5 and α²+β²=53, find a Quadratic Equation whose roots are α and β.
Answers
Answered by
5
α+β=5
α²+β²=53
⇒(α+β)²-2αβ=53
⇒(5)²-2αβ=53
⇒-2αβ=53-25
⇒-2αβ=28
⇒αβ=-14
The required polynomial whose roots are α and β is
x²+(α+β)x-αβ
⇒x²+5x-14
Hope this helped you!!!!!!
α²+β²=53
⇒(α+β)²-2αβ=53
⇒(5)²-2αβ=53
⇒-2αβ=53-25
⇒-2αβ=28
⇒αβ=-14
The required polynomial whose roots are α and β is
x²+(α+β)x-αβ
⇒x²+5x-14
Hope this helped you!!!!!!
Answered by
1
⇒(α+β)²-2αβ=53
⇒(5)²-2αβ=53
⇒-2αβ=53-25
⇒-2αβ=28
⇒αβ=-14
⇒(5)²-2αβ=53
⇒-2αβ=53-25
⇒-2αβ=28
⇒αβ=-14
rakesh2268:
X2-5x-14=0
Similar questions
Math,
8 months ago
Hindi,
8 months ago
India Languages,
8 months ago
Math,
1 year ago
Biology,
1 year ago