Math, asked by kadeeja79, 10 months ago

√5 and -√5 are the two zeroes of the polynomial x³+3x²−5x−5,find its third zero



Class 10

Answers

Answered by amansharma264
1

Answer:

\mathfrak{\large{ \green{\underline{\underline{Answer}}}}} \large \green{ = } \\  \large \green{x =  - 3}

Step-by-step explanation:

\large\blue{ \sqrt{5} \: and \:  -  \sqrt{5} \: are \: two \: zeroes \:   } \\ \large\blue{polynomial =  {x}^{3} + 3 {x}^{2} - 5x - 5  } \\ \large\blue{x =  \sqrt{5} \: and \: x =  -  \sqrt{5}  } \\ \large\blue{x -  \sqrt{5} = 0 } \\ \large\blue{x +  \sqrt{5} = 0 } \\ \large\green{ \underline{ \underline{product \: of \: two \: zeroes =  }}} \\ \large\red{(x -  \sqrt{5})(x +  \sqrt{5} ) } \\  \large \red{ {x}^{2} - 5 } \\ \large\green{ \underline{ \underline{formula \: of =  {x}^{2} -  {y}^{2} = (x + y)(x - y)  }}} \\ \large \green{ \frac{ {x}^{3} + 3 {x}^{2} - 5x  - 5 }{ {x}^{2} - 5 } } \\ \large\green{on \: dividing \: we \: get} \\ \large\green{quotient = x + 3} \\ \large\green{remainder = 10} \\ \large\green{third \: zeroes \: is \: } \\ \large\blue{x + 3 = 0} \\ \large\blue{x =  - 3}

Similar questions