Math, asked by sotekevidielie, 4 months ago

5. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of
depression of two ships are 30° and 45°. If one ship is exactly behind the other on the
same side of the lighthouse, find the distance between the two ships,​

Answers

Answered by sakshamangral7
1

Answer:75(\sqrt{3}-1)

Step-by-step explanation:

let the ships be C and D

and CD = h   (distance between two ships)

In ΔABC

\frac{75}{BC}=tan45°

\frac{75}{BC}=1

75 =BC

In ΔABD

\frac{75}{75+h} =tan30°

\frac{75}{75+h} =\frac{1}{\sqrt{3} }

75\sqrt{3} =75+h

75\sqrt{3} -75=h

75(\sqrt{3}-1)=h

Answered by Anonymous
7

Given :

It is observed that from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. One ship is exactly behind the other on the same side of the lighthouse.

To Find :

The distance between the two ships.

Solution :

Let DC be the distance between the two ships = x metres.

Let A be the position of the observer at an altitude of 75 m.

then AB = 75 m.

Let C & D be the positions of the two ships whose angles of depression as observed from A are 30° & 45° respectively, then

  • ∠ACB = 30°
  • ∠ADB = 45°

  • ∠ABD = 90°

From right angled ∆ABD,

\boxed{\bf\tan\ 45^{\circ}=\dfrac{Height}{Base}}

\\ \implies\sf\tan\ 45^{\circ}=\dfrac{AB}{BD}

where,

  • tan 45° = 1
  • Height = 75 m
  • Base = BD m

Substituting the values,

\\ \implies\sf1=\dfrac{75}{BD}

By cross multiplying,

\\ \implies\sf BD=75

\\ \therefore\boxed{\bf BD=75\ m.}

Now,

  • DC = x m
  • BD = 75 m

So,

  • BC = BD + DC = (75 + x) m

From right angled ∆ABC,

\boxed{\bf\tan\ 30^{\circ}=\dfrac{Height}{Base}}

\\ \implies\sf\tan\ 30^{\circ}=\dfrac{AB}{BC}

where,

  • tan 30° = 1/√3
  • Height = 75 m
  • BC = (75 + x) m

Substituting the values,

\\ \implies\sf\dfrac{1}{\sqrt{3}}=\dfrac{75}{75+x}

By cross multiplying,

\\ \implies\sf(75+x)\times1=75\times\sqrt{3}

\\ \implies\sf75+x=75\sqrt{3}

\\ \implies\sf x=75\sqrt{3}-75

Taking 3 as common,

\\ \implies\sf x=75(\sqrt{3}-1)

\\ \implies\sf x=75(1.732-1)

\\ \implies\sf x=75(0.732)

\\ \implies\sf x=75\times0.732

\\ \implies\sf x=54.9

\\ \therefore\boxed{\bf x=54.9\ m.}

The distance between the two ships is 54.9 m.

Explore More :

Trigonometric Ratios :

\\ \bullet\ \sf\sin\theta=\dfrac{Height}{Hypotenuse}

\\ \bullet\ \sf\cos\theta=\dfrac{Base}{Hypotenuse}

\\ \bullet\ \sf\tan\theta=\dfrac{Height}{Base}

\\ \bullet\ \sf\cot\theta=\dfrac{Base}{Height}

\\ \bullet\ \sf\sec\theta=\dfrac{Hypotenuse}{Base}

\\ \bullet\ \sf\cosec\theta=\dfrac{Hypotenuse}{Height}

Trigonometric Table :

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Attachments:
Similar questions