5. Charges of +20 u C each are kept at the corners A and B of a square ABCD each of side 9 cm and
charges of -20 u C each at the corners C and D. What is the total electrical potential energy of the
charges? Take infinity as the reference for zero PE. Ans ...... (-56.4 V) help me please......
Answers
Given :
- Charges +20µC are placed at A and B corners of a square ABCD.
- Charges -20µC are placed at corners C and D
- Side of square ABCD
To Find :
The total electrical potential energy of the charges .
Theory :
1)Electric potential energy due to two point charges :
2)Electric potential energy due to system of point charges
Solution :
Let the side of the square be r cm.
Then , AB=BC=CD=AD=r
And AC=BD =r√2
We have to find ,the total electrical potential energy of the charges.
Now put the given values q=20µC and r = 9 cm
Therefore, the total electrical potential energy of the charges is -56.5V.
Answer:
Given :
Charges +20µC are placed at A and B corners of a square ABCD.
Charges -20µC are placed at corners C and D
Side of square ABCD \sf\:9cm=10{}^{-2}m9cm=10
−2
m
To Find :
The total electrical potential energy of the charges .
Theory :
1)Electric potential energy due to two point charges :
{\purple{\boxed{\large{\bold{U=\dfrac{k\:q_{1}\times\:q_{2}}{r}}}}}}
U=
r
kq
1
×q
2
2)Electric potential energy due to system of point charges
{\red{\boxed{\large{\bold{U=U_{12} +U_{13} + U_{13}+ U_{14}.......}}}}}
U=U
12
+U
13
+U
13
+U
14
.......
Solution :
Let the side of the square be r cm.
Then , AB=BC=CD=AD=r
And AC=BD =r√2
We have to find ,the total electrical potential energy of the charges.
\sf\:U_{net}U
net
=U_{12}+U _{13}+U_{14}+U _{23}+U_{24}+U_{34}=U
12
+U
13
+U
14
+U
23
+U
24
+U
34
\sf=\dfrac{k\:q^2}{r}-\dfrac{k\:q^2}{r\sqrt{2}}-\dfrac{k\:q^2}{r}-\dfrac{k\:q^2}{r}-\dfrac{k\:q^2}{r\sqrt{2}}+\dfrac{k\:q^2}{r}=
r
kq
2
−
r
2
kq
2
−
r
kq
2
−
r
kq
2
−
r
2
kq
2
+
r
kq
2
\sf=\dfrac{2k\:q^2}{r}-\dfrac{2k\:q^2}{r\sqrt{2}}-\dfrac{2k\:q^2}{r}=
r
2kq
2
−
r
2
2kq
2
−
r
2kq
2
\sf=-\dfrac{2k\:q^2}{r\sqrt{2}}=−
r
2
2kq
2
\sf=-\dfrac{\sqrt{2}\:k\:q^2}{r}=−
r
2
kq
2
Now put the given values q=20µC and r = 9 cm
\sf=\dfrac{-\sqrt{2}\times9\times\:10{}^{9}\times(20\times\:10{}^{-6})^2}{9\times10{}^{-2}}=
9×10
−2
−
2
×9×10
9
×(20×10
−6
)
2
\sf=\dfrac{-\sqrt{2}\times9\times10^9\times400\times10{}^{-12}\times10^2}{9}=
9
−
2
×9×10
9
×400×10
−12
×10
2
\sf=\dfrac{-\sqrt{2}\times400}{10}=
10
−
2
×400
\sf=-40\sqrt{2}=−40
2
\sf=-56.5V=−56.5V
Therefore, the total electrical potential energy of the charges is -56.5V.