Math, asked by deekshitha1471, 1 year ago

5 cos square 60 degree + 4 second square 30 degree minus 10 square 45 degree / sin square 30 degree + cos 30 degree​

Answers

Answered by thameshwarp9oqwi
29

Answer:

(5 COS² 60 + 4 SEC²30 - TAN²45)/ (SIN²30+COS²30)

===> 5(1/2)² + 4(2/√3)² - (1)² / (1)

===> 5/4 + 4(4/3) - 1

===> 5/4 + 16/3 - 1

==> (15+64-12)/12

==> 67/12

Answered by pinquancaro
18

\dfrac{5\cos^260^\circ+4\sec^2 30^\circ-\tan^2 45^\circ}{\sin^2 30^\circ+\cos^2 30^\circ}=\dfrac{67}{12}

Step-by-step explanation:

Given : Expression \dfrac{5\cos^260^\circ+4\sec^2 30^\circ-\tan^2 45^\circ}{\sin^2 30^\circ+\cos^2 30^\circ}

To find : Evaluate the expression ?

Solution :

Using trigonometric values,

\cos 60^\circ=\frac{1}{2}\\\sec 30^\circ=\frac{2}{\sqrt3}\\\tan 45^\circ =1\\\sin 30^\circ=\frac{1}{2}\\\cos 30^\circ=\frac{\sqrt3}{2}

Substitute the values,

=\dfrac{5(\frac{1}{2})^2+4(\frac{2}{\sqrt3})^2-(1)^2}{(\frac{1}{2})^2+(\frac{\sqrt3}{2})^2}

=\dfrac{\frac{5}{4}+\frac{16}{3}-1}{\frac{1}{4}+\frac{3}{4}}

=\dfrac{\frac{15+64-12}{12}}{\frac{4}{4}}

=\dfrac{\frac{67}{12}}{1}

=\dfrac{67}{12}

Therefore, \dfrac{5\cos^260^\circ+4\sec^2 30^\circ-\tan^2 45^\circ}{\sin^2 30^\circ+\cos^2 30^\circ}=\dfrac{67}{12}

#Learn more

EVALUATE : SIN THETA + COS THETA + SIN THETA COS (90°- THETA) COS THETA / SEC(90°-theta) + cos theta sin (90-theta)sin theta /cosec(90°-theta) - 2 sin(90°-theta) cos (90°-theta)

brainly.in/question/2500360=

Similar questions