Physics, asked by jaslaponnu2, 2 months ago

5. During an experiment, a signal
from a spaceship reached the
ground station in five minutes.
What was the distance of the
spaceship from the ground
station? The signal travels at the
speed of light, that is, 3 x 10^8
m s^-1.​

Answers

Answered by satvinderrana911
1

Answer:

The signal travels in a straight line, the distance between the spaceship and the ground station is equal to the total distance travelled by the signal. 5 minutes = 5*60 seconds = 300 seconds. Speed of the signal = 3 × 108 m/s. = 9*1010 meters.

Answered by Anonymous
5

Answer:

Question: During an experiment, a signal from a spaceship reached the ground station in five minutes. What was the distance of the spaceship from the ground station? The signal travels at the speed of light, that is, 3 × 10⁸ m/s

Provided that:

  • Time = 5 minutes
  • Speed = 3 x 10⁸ m/s

To calculate:

  • The distance

Solution:

  • The distance = 9 × 10¹⁰

Using concept:

  • Formula to calculate distance
  • Formula to convert min into s

Using formula:

  • Distance = Speed × Time
  • 1 minute = 60 seconds

Required solution:

~ Firstly let us convert minutes into seconds by using suitable formula!

\begin{gathered}:\implies \sf 1 \: minute \: = 60 \: seconds \\ \\ :\implies \sf 5 \: minutes \: = 5 \times 60 \: seconds \\ \\ :\implies \sf 5 \: minutes \: = 300 \: seconds \\ \\ {\pmb{\sf{Henceforth, \: converted!}}}\end{gathered}

~ Now let's calculate distance!

\begin{gathered}:\implies \sf Distance \: = Speed \times Time \\ \\ :\implies \sf Distance \: = 3 \times 10^8 \times 300 \\ \\ :\implies \sf Distance \: = 900 \times 10^8 \\ \\ :\implies \sf Distance \: = 9 \times 10 \times 10 \times 10^8 \\ \\ :\implies \sf Distance \: = 9 \times 10^{10} \: metres \\ \\ {\pmb{\sf{Henceforth, \: solved!}}}\end{gathered}

Similar questions