Math, asked by gowthamoja, 4 months ago

5.Find the circumcentre of the triangle whose vertices are (1 3) (-3 5) and (5 1)
pls answer and don't waste my time​

Answers

Answered by mathdude500
4

\large\underline\purple{\bold{Solution :-  }}

❖ Let us consider a triangle ABC having vertices A(1, 3), B(-3, 5) and C(5, 1) respectively.

❖ Let O(x, y) be the circumcentre of triangle ABC.

⇛ OA = OB = OC

 \tt \:  ⟼ Consider \: OA  \:  =  \: OB

\bf\implies \: {OA }^{2}  =  {OB}^{2}

 \tt \:  ⟼  {(x - 1)}^{2}  +  {(y - 3)}^{2}  =  {(x + 3)}^{2}  +  {(y - 5)}^{2}

 \tt \:   \cancel{x}^{2}  + 1 - 2x +  \cancel{y}^{2}  + \cancel9 - 6y =  \cancel{x}^{2}  + \cancel9 + 6x +  \cancel{y}^{2}  + 25 + 10y

 \tt \:  ⟼ 8x + 16y =  - 24

\bf\implies \:x + 2y =  - 3

\tt\implies \:x =  - 3 - 2y -  -  -  - (1)

 \tt \:  ⟼ Consider \: OB \:  =  \: OC

\bf\implies \: {OB}^{2}  =  {OC}^{2}

 \tt \:  ⟼  {(x + 3)}^{2}  +  {(y - 5)}^{2}  =  {(x - 5)}^{2}  +  {(y - 1)}^{2}

 \tt \:  \cancel{x}^{2}  + 9 + 6x +  \cancel{y}^{2}  + \cancel25 - 10y =  \cancel{x}^{2}  + \cancel25 - 10x +  \cancel{y}^{2}  + 1 - 2y

\tt\implies \:16x - 8y =  - 8

\tt\implies \:2x - y =  - 1

\tt\implies \:2( - 3 - 2y) - y =  - 1 \:  \: (using \: (1))

\tt\implies \: - 6 - 4y - y =  - 1

\tt\implies \:5y =  - 5

\tt\implies \:y =  - 1

☆ On substituting the value of y in equation (1), we get

 \tt \:  ⟼ x =  - 3 - 2( - 1)

\tt\implies \: x =  - 3 + 2

\tt\implies \:x =  - 1

\bf\implies \:So,  \: coordinates \: of \: circumcentre \: is \: (-1,-1)

Attachments:
Similar questions