Math, asked by Kpop0q9, 21 days ago

5. Find the least number which must be added to each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained. Hui) 525 (i) 1750 (iii) 252 Giv (iv) 1825 v) 6412 Find the length of the side of a square whose area is 441 m².​

Attachments:

Answers

Answered by safiyashaikh232011
2

Answer:

PLEASE MAKE ME BRAINLIST

Step-by-step explanation:

Solution:

In order to find the least number to be added to the given no.,

we must find a greater perfect square number, closest to the given number.

i) 525

The closest perfect square number is 576

Difference =576−525=51

Hence, 51 must be added to 525 in order to make it a perfect square.

576

=24

ii) 1750

The closest perfect square number is 1764

Difference =1764−1750=14

Hence, 14 must be added to 1750 in order to make it a perfect square.

1764

=42

iii) 252

The closest perfect square number is 256

Difference =256−252=4

Hence, 4 must be added to 252 in order to make it a perfect square.

256

=16

iv) 1825

The closest perfect square number is 1849

Difference =1849−1825=24

Hence, 24 must be added to 1825 in order to make it a perfect square.

1849

=43

v) 6412

The closest perfect square number is 6561

Difference =6561−6412=149

Hence, 149 must be added to 6412 in order to make it a perfect square.

6561

=81

Similar questions