5. Find the quadratic polynomial whose zeroes are 7 + root3 and 7 - root 3 .
Class 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
10
Let the zeroes of the polynomial be a and b.
Given Zeroes of the Quadratic polynomial are![7 + \sqrt{3}, 7 - \sqrt{3} 7 + \sqrt{3}, 7 - \sqrt{3}](https://tex.z-dn.net/?f=7+%2B++%5Csqrt%7B3%7D%2C+7+-++%5Csqrt%7B3%7D++)
Therefore the required quadratic polynomial is:
![= \ \textgreater \ x^2 - (a + b)x + (ab) = \ \textgreater \ x^2 - (a + b)x + (ab)](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++x%5E2+-+%28a+%2B+b%29x+%2B+%28ab%29)
![= \ \textgreater \ x^2 - (7 + \sqrt{3} + 7 - \sqrt{3} )x + (7 + \sqrt{3} )(7 - \sqrt{3} ) = \ \textgreater \ x^2 - (7 + \sqrt{3} + 7 - \sqrt{3} )x + (7 + \sqrt{3} )(7 - \sqrt{3} )](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++x%5E2+-+%287+%2B++%5Csqrt%7B3%7D+%2B+7+-+++%5Csqrt%7B3%7D+%29x+%2B+%287+%2B++%5Csqrt%7B3%7D+%29%287+-++%5Csqrt%7B3%7D+%29)
![= \ \textgreater \ x^2 - 14x + (49 - 3) = \ \textgreater \ x^2 - 14x + (49 - 3)](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++x%5E2+-+14x+%2B+%2849+-+3%29)
![= \ \textgreater \ x^2 - 14x + 46 = \ \textgreater \ x^2 - 14x + 46](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++x%5E2+-+14x+%2B+46)
Hope this helps!
Given Zeroes of the Quadratic polynomial are
Therefore the required quadratic polynomial is:
Hope this helps!
Similar questions
Math,
8 months ago
Political Science,
8 months ago
Math,
8 months ago
Math,
1 year ago
Math,
1 year ago