Math, asked by drout2895, 7 months ago

.
5. Find the total surface area of a cylindrical tank whose capacity is 5632 m' and height is 28 m​

Answers

Answered by SarcasticL0ve
11

\star\;{\underline{\frak{AnswEr\;:}}}\\ \\

\setlength{\unitlength}{1.5 cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0) \put(2.3,1){\vector(0,1){1.5}}\put(2.3,1){\vector(0, - 1){1.2}}\put(2.3,1){ $\bf 28 \: m$}\put(0.3,0.1){ $\bf r$}\put(0,0){\vector(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5)\put(0.5,1){ $\bf 5632 \: m^3$}\end{picture}

⠀⠀⠀

\sf GivEn \begin{cases}& \sf{Volume\;of\; cylindrical\;tank = \bf{5632\;m^3}}  \\ & \sf{Height\;of\; cylindrical\;tank = \bf{28\;m}}  \end{cases}

We have to find, Total surface area of cylindrical tank.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\star\;{\underline{\frak{We\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\purple{Volume_{(cylinder)} = \pi r^2h}}}}\\ \\

:\implies\sf \dfrac{22}{ \cancel{7}} \times r^2 \times \cancel{28} = 5632\\ \\

:\implies\sf 22 \times r^2 \times 3 = 5632\\ \\

:\implies\sf 88 \times r^2 = 5632\\ \\

:\implies\sf r^2 = \cancel{ \dfrac{5632}{88}}\\ \\

:\implies\sf r^2 = 64\\ \\

:\implies\sf \sqrt{r^2} = \sqrt{64}\\ \\

:\implies{\boxed{\frak{\pink{r = 8\;m}}}}\bigstar\\ \\

\therefore\;{\underline{\sf{Radius\;of\; cylindrical\; tank\;is\; \bf{8\;m}.}}}\;\\ \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀☯ Now, Finding Total Surface Area of Cylindrical tank, \\ \\

\star\;{\underline{\frak{We\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\purple{TSA_{(cylinder)} = 2 \pi r(h + r)}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times 8 \bigg( 28 + 8 \bigg)\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times 8 \bigg(  36 \bigg)\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times 288\\ \\

:\implies\sf \cancel{\dfrac{12672}{7}}\\ \\

:\implies{\boxed{\frak{\pink{1810.285\;m^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Total\;Surface\;area\;of\; cylindrical\; tank\;is\; \bf{1810.285\;m^2}.}}}\\ \\

Similar questions