Math, asked by ritvikverma862, 4 months ago

5 Find the value of a & bif: 3:45 = a + bV5​

Attachments:

Answers

Answered by xInvincible
2

\huge\fcolorbox{red}{cyan}{a=7/2\:and\:b=3/2}

Step-by-step explanation:

 \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} } \\  =  >  \bf{lets \: rationalize}  \\  =  >  \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }  \times  \frac{3  +  \sqrt{5} }{3 +  \sqrt{5} }  \\  =  > \bf  \color{purple}{ \frac{(x + y) {}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy}{(x - y)(x + y) =  {x}^{2} -  {y}^{2}  } } \\  =  >  \frac{(3 {)}^{2}  + ( \sqrt{5} ) ^{2}  + (2 \times 3 \times  \sqrt{5} )}{( {3)}^{2} - ( \sqrt{5 {)}^{2} }  }  \\  =  >  \frac{9 + 5 + 6 \sqrt{5} }{9 - 5}  \\  =  >  \frac{14 + 6 \sqrt{5} }{4}  \\  =  >  \frac{14}{4}  +  \frac{6 \sqrt{5} }{4}  \\  =  >  \frac{7}{2}  +  \frac{3 \sqrt{5} }{2}

Thus The Value of a is '7/2' and Value of b is '3/2'

Similar questions