Business Studies, asked by kaushal200585, 4 months ago

5
For a continuous data distribution, 10-20 with frequency 3, 20-30 with frequency 5, 30 40 with frequency
7and 40-50 with frequency 1, the value of quartile deviation is.
Select one:
O a. 2
O b. 6.85
O c. 6:32
d. 10​

Answers

Answered by talasilavijaya
7

Answer:

Quartile deviation=6.85

Explanation:

Tabulating the data:

             \left\begin{array}{cccc}S.No&Classinterval&frequency&cumulativefrequency\\1&10-20&3&3\\2&20-30&5&3+5=8\\3&30-40&7&8+7=15\\4&40-50&1&15+1=16\end{array}\right

Here, N=16

To find the interval of Q_{1}, i\frac{N}{4} = 1\frac{16}{4}=4

So, Q_{1} lies in the interval 20-30

And for Q_{3}, i\frac{N}{4} = 3\frac{16}{4}=12

So, Q_{3} lies in the interval 30-40

Formula for Quartile is Q_{n} =l_{1} +\frac{i(\frac{N}{4} )-c}{f} (l_{2}-l_{1}  )

Substituting the values for Q_{1},

                                              Q_{1} =20+\frac{4-3}{5} (30-20)\\\\      =20+\frac{1}{5} (10)=22  

Substituting the values for Q_{3},

                                              Q_{3} =30+\frac{12-8}{7} (40-30)\\\\ =30+\frac{4}{7} (10)=35.71

Quartile deviation, Q.D=\frac{Q_{3}- Q_{1}}{2}\\\\

                                       =\frac{35.71-22}{2} =6.85

So, the correct answer is option b.

Similar questions