5. Given sec theta = 13/12 calculate all other trigonometric ratios.
Answers
It is given that secθ=13/12.
The formula for cosine function is,
cosθ=1/secθ
cosθ=1/ (13/12)
cosθ=12/13
Draw triangle ABC according to given conditions.(see attachment)
The formula for cosine function is,
cosθ=AB/AC
AB/AC=12/13
Let, the value of AC=13x and AB=12x.
Use Pythagoras theorem in given triangle ABC as,
AC^2=AB^2+BC^2
Substitute the values of AC=13x and AB=12x in the above formula we get.
(13x)^2=(12x)^2+(BC)^2
169x^2=144x^2+(BC)^2
(BC)^2=25x^2
BC=5x
The formula for sine function is,
sinθ=BC/AC
Substitute the values BC=5x and AC=13x in the above formula we get,
sinθ=5x/13x
sinθ=5/13
The formula for cosecant function is,
cosecθ=1/sinθ
cosecθ=13/5
The formula for cosine function is,
cosθ=AB/AC
Substitute the values AC=13x and AB=12x in the above formula we get,
cosθ=12/13
The formula for tangent function is,
tanθ=BC/AB
Substitute the values BC=5x and AB=12x in the above formula we get,
tanθ=5x/12x
tanθ=5/12
The formula for cotangent function is,
tanθ=1/cotθ
cotθ=12/5
Thus, the values are cotθ=12/5, tanθ=5/12, sinθ=5/13, cosecθ=13/5 and cosθ=12/13.
Answer:
see the picture okay.......................................