Math, asked by samarth2069, 2 months ago

5. Given the linear equation 2x + 3y - 8 = 0, write another linear equation in two variables x and y such that the geometric representation of the pair so formed is
(i) intersecting lines
(ii) parallel lines
(iii) coincident lines (NCERT) ​

Answers

Answered by prtimaiimtgmailcom
1

Answer:

answer is 1

intersecting lines

Answered by Srimi55
2

Step-by-step explanation:

Take X,Y-axes as shown in attached figure.

Suppose that the particle strikes the plane at a point P with coordinate (x,y). Consider the motion between A and P.

\begin{gathered} \sf{ \red{Motion~ in~ x-direction:}} \\ \: \: \: \: \: \: \: \: \: \sf{ \blue{Initial~ velocity = u}} \\ \: \ \: \: \: \sf{ \blue{Acceleration= 0}} \\ \: \: \: \: \: \: \: \: \: \: \: \ \: \sf{ \blue{x = ut}} \: \: \: \: \: \: \: \: \: \: \: \: \: ...(i)\end{gathered}

Motion in x−direction:

Initial velocity=u

Acceleration=0

x=ut...(i)

\begin{gathered} \sf{ \red{Motion~ in~ y-direction:}} \\ \: \: \: \: \: \: \: \: \: \sf{ \blue{Initial~ velocity = 0}} \\ \: \ \: \: \: \sf{ \blue{Acceleration= g}} \\ \: \: \: \: \: \: \: \: \: \: \: \ \: \sf{ \blue{y = \frac{1}{2} {gt}^{2} }} \: \: \: \: \: ....(ii)\end{gathered}

Motion in y−direction:

Initial velocity=0

Acceleration=g

y=

2

1

gt

2

....(ii)

\maltese \: \sf{Eliminating \: \: t \: \: from \: (i) \: and \: (ii)}✠Eliminatingtfrom(i)and(ii)

\begin{gathered} \longrightarrow\: \: \: \: \: \: \: \: \: \sf {y = \frac{1}{2} g \frac{ {x}^{2} }{ {u}^{2} } } \\ \\ \: \: \: \: \: \: \: \: \: \: \longrightarrow\sf{ \pink{y = \tan\theta}}\end{gathered}

⟶y=

2

1

g

u

2

x

2

⟶y=tanθ

Thereafter,

\begin{gathered} \implies \sf { \frac{ {gx}^{2} }{ {2u}^{2} }} = x \tan\theta \: \\ \\ \implies\sf \bold{x = \frac{2 {u}^{2} \tan \theta }{g}}\end{gathered}

2u

2

gx

2

=xtanθ

⟹x=

g

2u

2

tanθ

\sf{Clearly \: the \: point \: P \: corresponds \: to,}ClearlythepointPcorrespondsto, \begin{gathered} \\ ~~~~~~~~~~ \sf{\: x = \: \frac{2 {u}^{2} \: \tan \theta }{g} }\end{gathered}

x=

g

2u

2

tanθ

then,

\sf{y = x \tan \theta = \frac{2 {u}^{2} { \tan}^{2} \theta }{g} }y=xtanθ=

g

2u

2

tan

2

θ

\begin{gathered} \sf{The \:distance \: \: AP = } \: l = \sqrt{ {x}^{2} + {y}^{2} } \\ \\ \: \: \: \: \: \: \: \implies \sf{\frac{2 {u}^{2} }{g} tan \theta \sqrt{1 + { \tan}^{2} \theta } } \\ \\ \: : \implies \sf{ \pink{ \frac{2 {u}^{2} }{g} \tan \theta \sec \theta }}\end{gathered}

ThedistanceAP=l=

x

2

+y

2

g

2u

2

tanθ

1+tan

2

θ

:⟹

g

2u

2

tanθsecθ

Take X,Y-axes as shown in attached figure.

Suppose that the particle strikes the plane at a point P with coordinate (x,y). Consider the motion between A and P.

\begin{gathered} \sf{ \red{Motion~ in~ x-direction:}} \\ \: \: \: \: \: \: \: \: \: \sf{ \blue{Initial~ velocity = u}} \\ \: \ \: \: \: \sf{ \blue{Acceleration= 0}} \\ \: \: \: \: \: \: \: \: \: \: \: \ \: \sf{ \blue{x = ut}} \: \: \: \: \: \: \: \: \: \: \: \: \: ...(i)\end{gathered}

Motion in x−direction:

Initial velocity=u

Acceleration=0

x=ut...(i)

\begin{gathered} \sf{ \red{Motion~ in~ y-direction:}} \\ \: \: \: \: \: \: \: \: \: \sf{ \blue{Initial~ velocity = 0}} \\ \: \ \: \: \: \sf{ \blue{Acceleration= g}} \\ \: \: \: \: \: \: \: \: \: \: \: \ \: \sf{ \blue{y = \frac{1}{2} {gt}^{2} }} \: \: \: \: \: ....(ii)\end{gathered}

Motion in y−direction:

Initial velocity=0

Acceleration=g

y=

2

1

gt

2

....(ii)

\maltese \: \sf{Eliminating \: \: t \: \: from \: (i) \: and \: (ii)}✠Eliminatingtfrom(i)and(ii)

\begin{gathered} \longrightarrow\: \: \: \: \: \: \: \: \: \sf {y = \frac{1}{2} g \frac{ {x}^{2} }{ {u}^{2} } } \\ \\ \: \: \: \: \: \: \: \: \: \: \longrightarrow\sf{ \pink{y = \tan\theta}}\end{gathered}

⟶y=

2

1

g

u

2

x

2

⟶y=tanθ

Thereafter,

\begin{gathered} \implies \sf { \frac{ {gx}^{2} }{ {2u}^{2} }} = x \tan\theta \: \\ \\ \implies\sf \bold{x = \frac{2 {u}^{2} \tan \theta }{g}}\end{gathered}

2u

2

gx

2

=xtanθ

⟹x=

g

2u

2

tanθ

\sf{Clearly \: the \: point \: P \: corresponds \: to,}ClearlythepointPcorrespondsto, \begin{gathered} \\ ~~~~~~~~~~ \sf{\: x = \: \frac{2 {u}^{2} \: \tan \theta }{g} }\end{gathered}

x=

g

2u

2

tanθ

then,

\sf{y = x \tan \theta = \frac{2 {u}^{2} { \tan}^{2} \theta }{g} }y=xtanθ=

g

2u

2

tan

2

θ

\begin{gathered} \sf{The \:distance \: \: AP = } \: l = \sqrt{ {x}^{2} + {y}^{2} } \\ \\ \: \: \: \: \: \: \: \implies \sf{\frac{2 {u}^{2} }{g} tan \theta \sqrt{1 + { \tan}^{2} \theta } } \\ \\ \: : \implies \sf{ \pink{ \frac{2 {u}^{2} }{g} \tan \theta \sec \theta }}\end{gathered}

ThedistanceAP=l=

x

2

+y

2

g

2u

2

tanθ

1+tan

2

θ

:⟹

g

2u

2

tanθsecθ

Similar questions
Math, 10 months ago