Math, asked by shrutymohanty2003s, 17 days ago

5. (i) The product of two expressions is x^5 +x^3 +x. If one of the two expressions is x^2+x+1, find the other expression.

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm \: First\:expression =  {x}^{2} + x + 1 \\

and

\rm \: Product\:of\:two\:expressions =  {x}^{5} +  {x}^{3} + x \\

\rm \:  =  \: x( {x}^{4} +  {x}^{2} + 1) \\

can be rewritten as

\rm \:  =  \: x( {x}^{4} +  {x}^{2}  +  {x}^{2} -  {x}^{2}  + 1) \\

\rm \:  =  \: x( {x}^{4} +  2{x}^{2}  -  {x}^{2}  + 1) \\

can be re-arranged as

\rm \:  =  \: x( {x}^{4} +  2{x}^{2} + 1  -  {x}^{2}) \\

\rm \:  =  \: x\bigg[ \bigg({( {x}^{2}) }^{2} + 2 \times  {x}^{2} \times 1 +  {1}^{2}\bigg) -  {x}^{2}\bigg] \\

We know,

\boxed{ \rm{ \: {x}^{2} + 2xy +  {y}^{2}  =  {(x + y)}^{2}  \: }} \\

So, using this result, we get

\rm \:  =  \: x\bigg[ {( {x}^{2} + 1)}^{2} -  {x}^{2}\bigg] \\

We know,

\boxed{ \rm{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

So, using this result, we get

\rm \:  =  \: x\bigg[( {x}^{2} + x + 1)( {x}^{2} + 1 - x) \bigg] \\

So,

\rm\implies \:Product\:of\:two\:expressions = x( {x}^{2} + 1 + x)( {x}^{2} + 1 - x) \\

Now,

\rm \: Other\:expression = \dfrac{Product\:of\:two\:expressions}{First\:expression}  \\

\rm \:  =  \: \dfrac{x( {x}^{2}  + 1 + x)( {x}^{2}  + 1 - x)}{ {x}^{2}  + x + 1}  \\

\rm \:  =  \:  x({x}^{2} + 1 - x)

\rm \:  =  \:  {x}^{3} + x  - {x}^{2}  \\

\rm \:  =  \:  {x}^{3} - {x}^{2}  + x \\

Hence,

\rm\implies \:\boxed{ \rm{ \:Other\:expression  =  \:  {x}^{3} - {x}^{2}  + x  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions