Math, asked by ap0477589, 2 months ago

5. If 2x = 3 + root 7, find the value of : 4x ^2 + 1/x^2 ​

Answers

Answered by Anonymous
2

 \bold \red{The \:  value \:  of \:  4x^{2} +\frac{1}{x^{2} }4x} \\ is \:  \frac{256+96\sqrt{7} }{8+3\sqrt{7} }

Step-by-step explanation:

 \bold \red{Given, 2x = 3 + \sqrt{7} }

Squaring both sides,

(2x)^{2} = (3+\sqrt{7} )^{2}

4x^{2} = 9 + 7 + 6\sqrt{7}

[(a+b)^{2} = a^{2} +b^{2} + 2ab]

4x^{2} = 16 + 6\sqrt{7}

x^{2} = \frac{(16+6\sqrt{7}) }{4}

Now,

 \bold \red{\begin{gathered}4x^{2} + \frac{1}{x^{2} } \\= (16+6\sqrt{7} ) + \frac{1}{\frac{(16+6\sqrt{7}) }{4}}\end{gathered} }

[Using equation(i) & (ii)]

 \bold \red{\begin{gathered}= (16 + 6\sqrt{7} ) +\frac{4}{(16+6\sqrt{7}) } \\= \frac{(16+6\sqrt{7})^{2} +4 }{16+6\sqrt{7}} \\= \frac{256 + 252 + 192\sqrt{7}+4 }{16+6\sqrt7} \\= \frac{512+192\sqrt{7} }{16+6\sqrt{7}} \\=\frac{256+96\sqrt{7}}{8+3\sqrt{7}} \\\end{gathered} }

 \bold \red{Hence, the  \: value \:  of \:  4x^{2} +\frac{1}{x^{2} }}

 \bold \red{Hence, the  \: value \:  of \:  4x^{2} +\frac{1}{x^{2} }} \\  \bold \red{is \:  \frac{256+96\sqrt{7} }{8+3\sqrt{7} } }

.

Answered by Anonymous
23

Answer:

Given:-

If 2x = 3 + 7, find the value of :  4x² + \dfrac{1}{x²} .

To Find:-

The value of :  4x² + \dfrac{1}{x²} .

Note:-

Here from the Given question, we will find the value of "x" and then we will apply the "x" value to solve it.

For finding unknown values, known values needs be transposed from its side to another and signs are also changed or not ( signs are not changed in multiple and divisional value ). For example - Multiple becomes divisional.

In a fraction, if there is 1 numerator and 2 denominators then we should reciprocated it for calculations and in this divisional becomes multiple. For example -  \dfrac{1}{\frac{2}{3}} \implies \dfrac{1}{2} × 3

Formula Used:-

( a + b )² = a² + b² + 2ab.

Solution:-

[ Note first point ]

 \huge\red{2x = 3 + √7}

 \huge\red{\ \ \ \ x = ?}

So~

▪︎ 2x = 3 + √7

Squaring both side~

▪︎ ( 2x )² = ( 3 + √7 )²

According to Formula Used and by square, root will be canceled~

▪︎ 4x² = 3² + 7 + 2 × 3 × √7

▪︎ 4x² = 9 + 7 + 6 × √7

▪︎ 4x² = 16 + 6 × √7

▪︎ 4x² = 16 + 6√7

According to note second point ( transposing )~

▪︎ x² = \dfrac{16 + 6√7}{4}

▪︎ x = \sqrt\dfrac{16 + 6√7}{4}

 \huge\pink{x = \sqrt\dfrac{16 + 6√7}{4}}

______________________________________

 \huge\red{x = \sqrt\dfrac{16 + 6√7}{4}}

 \huge\red{Value \ \ of \ \ 4x² + \dfrac{1}{x²} = ?}

According to note first point only~

▪︎ 4x² + \dfrac{1}{x²}

▪︎ 4 × ( \sqrt\dfrac{16 + 6√7}{4} )² + \dfrac{1}{( \sqrt\frac{16 + 6√7}{4} )²}

Roots will be canceled by square and other numbers will be multiplied by square~

▪︎ 4 × \dfrac{16 + 6√7}{4} + \dfrac{1}{\frac{16 + 6√7}{4}}

According to note third point~

▪︎ 4 × \dfrac{16 + 6√7}{4} + \dfrac{1}{16 + 6√7} × 4

▪︎ 1 × 16 + 6√7 + \dfrac{4}{16 + 6√7}

▪︎ 16 + 6√7 + \dfrac{4}{16 + 6√7}

L.C.M = 16 + 67~

▪︎ 16 + 6√7 × \dfrac{16 + 6√7}{16 + 6√7} + \dfrac{4}{16 + 6√7} × \dfrac{1}{1}

▪︎ \dfrac{( 16 + 6√7 )²}{16 + 6√7} + \dfrac{4}{16 + 6√7}

▪︎ \dfrac{( 16 + 6√7 )² + 4}{16 + 6√7}

According to Formula Used~

▪︎ \dfrac{16² + ( 6√7 )² + 2 × 16 × 6√7}{16 + 6√7}

▪︎ \dfrac{256 + ( 6² × 7 ) + 192√7}{16 + 6√7}

▪︎ \dfrac{256 + ( 36 × 7 ) + 192√7}{16 + 6√7}

▪︎ \dfrac{256 + 252 + 192√7}{16 + 6√7}

Mixed fraction~

▪︎ 13 \ \dfrac{4}{13}

 \huge\pink{Value \ \ of \ \ 4x² + \dfrac{1}{x²} = \dfrac{173}{13} \ \ or \ \ 13 \ \dfrac{4}{13}}

Answer:-

Hence, the value of  4x² + \dfrac{1}{x²} = \dfrac{173}{13} \ \ or \ \ 13 \ \dfrac{4}{13} .

:)

Similar questions