Math, asked by sharmapooja74682, 4 months ago

5. If 7th and 13th terms of 2 points
an A.P be 34 and 64
respectively, then its 18th
térm is *
O 87
88
89
90द सम ऑफ फर्स्ट 10 नेचुरल नंबर इज ​

Answers

Answered by EliteZeal
28

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

\large\underline{\green{\bf Given :-}}

 \:\:

  • 7th term of AP is 34

 \:\:

  • 13th term of AP is 64

 \:\:

\large\underline{\red{\bf To \: Find :-}}

 \:\:

  • 18th term

 \:\:

\large\underline{\orange{\bf Solution :-}}

 \:\:

We know that ,

 \:\:

 \sf a_n = a + (n - 1)d ⚊⚊⚊⚊ ⓵

 \:\:

Where,

 \:\:

  •  \sf a_n = nth term

  • a = First term

  • n = Number of terms

  • d = Common difference

 \:\:

 \underline{\bold{\texttt{For 7th term :}}}

 \:\:

  •  \sf a_n = 34

  • a = a

  • n = 7

  • d = d

 \:\:

Putting these values in ⓵

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf 34 = a + (7 - 1)d

 \:\:

➜ 34 = a + 6d ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{For 13th term :}}}

 \:\:

  •  \sf a_n = 64

  • a = a

  • n = 13

  • d = d

 \:\:

Putting these values in ⓵

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf 64 = a + (13 - 1)d

 \:\:

➜ 64 = a + 12d ⚊⚊⚊⚊ ⓷

 \:\:

{ Subtracting equation ⓶ from ⓷

 \:\:

➜ 64 - 34 = a + 12d - a - 6d

 \:\:

➜ 30 = 6d

 \:\:

➨ d = 5 ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence the Common difference is 5

 \:\:

Putting d = 5 from ⓸ to ⓶

 \:\:

➜ 34 = a + 6d

 \:\:

➜ 34 = a + 6(5)

 \:\:

➜ 34 = a + 30

 \:\:

➜ a = 34 - 30

 \:\:

➨ a = 4 ⚊⚊⚊⚊ ⓹

 \:\:

  • Hence the first term is 4

 \:\:

 \underline{\bold{\texttt{For 18th term :}}}

 \:\:

  •  \sf a_n = a_{18 }

  • a = 4

  • n = 18

  • d = 5

 \:\:

⟮ Putting these values in ⓵ ⟯

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_{ 18 } = 4 + (18 - 1)5

 \:\:

 \sf a_{ 18 } = 4 + 17(5)

 \:\:

 \sf a_{ 18 } = 4 + 85

 \:\:

 \sf a_{ 18 } = 89

 \:\:

  • Hence the 18th term of given AP is 89

 \:\:

═════════════════════════

Similar questions