Math, asked by rudrapatel2256, 5 months ago


5. If c and B are zeros of p(x) X2 - x - 30 then ? + B
O (A) 91
O (B) 125
O (C) 216
O (D) 341​

Answers

Answered by PharohX
3

AS I UNDERSTAND UR QUESTION :-

GIVEN :

 \sf \: c \:  and \:  b  \:  \: are   \: \: the  \: zeros \:   \: of \:  \:  the \:  \:  polynomial

 \sf \: P(x) =  {x}^{2}  - x - 30

TO FIND :-

 \sf \: value \: of \: c + b =

SOLUTION :-

 \sf If \: zeros \: are \: given \: it \: means \: the \: value \: of \: polynomial \\  \sf \: at \: these \: become \: zero \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: At \:  \:  x =c \:  \:putting \: first \: root \: in \: given \: polynomial.

 \sf \: P(c) =  {c}^{2}  - c - 30

 \sf \: Here \:( c) \: is \:zero \: of \: the \: polynomial \: then

 \sf \: given \: polynomial \: become \: zero

 \sf \implies  {c}^{2}  - c - 30 = 0

 \sf \implies  {c}^{2}  -6 c + 5c - 30 = 0

 \sf \implies  c(c  -6)  + 5(c - 6) = 0

 \sf \implies  (c  -6) (c  + 5) = 0

 \sf \: Then \:  c = 6  \: or \:  \:  - 5

 \large \sf \: Similarly :  -

 \sf \: At \:  \:  x =b \:  \:putting  in \: given \: polynomial.

 \sf \: P(c) =  {b}^{2}  - b - 30

 \sf \implies  {b}^{2}  -6 b + 5b - 30 = 0

 \sf \implies  b(b  -6)  + 5(b - 6) = 0

 \sf \implies  (b -6) (b  + 5) = 0

 \sf \: Then \:  b = \:   6  \: \:  \:  \:  or \:  \:  - 5

 \sf \: If  \:  \: given \:  \:  question \:  is \:  \:  (c+b )

 \sf \: Then \:  \:  it  \:  \: may  \:  \: be

 \sf \: (c + b) = 6 + 6 = 12

 \sf \: (c + b) = 6 + ( - 5) = 1

 \sf \:( c + b) =  - 5 + ( - 5 )=  - 10

Similar questions