5.
If cosec A + cot A =
11
then tan A is equal to-
Answers
Answer:
cosecA +cotA =11/2
or 1/sinA + cosA/sinA = 11/2
or 1+ cosA/sinA = 11/2
2 cos^2A/ 2 / 2sinA/ cosA/2 = 11/2
cotA/2 =11/2
so tanA/2 = 2/11
so tanA = 2 tanA/2/( 1- tan^2A/2
={ 2* 2/11}/( 1- 4/121)
= (4/11)/ (117/121)
=4/11* 121/117
=44/117
Step-by-step explanation:
Following 3 formulas are useful to solve this:
cos(A) = 2 (cosA/2)^2 - 1
sin(A) = 2 sin(A/2) cos(A/2)
tan(A) = 2tanA/2 / (1 - (tanA/2)^2)
cosecA + cotA = 11/2
=> 1/sin(A) + cos(A)/sin(A) = 11/2
=> 1/sin(A)(1 + cos(A)) = 11/2
=> (1 + cos(A)) / sin(A) = 11/2
=> 2(cosA/2)^2 / sin(A) = 11/2
=> 2(cosA/2)^2 / 2sin(A/2)cos(A/2) = 11/2
=> 1 / tan(A/2) = 11/2
=> tan(A/2) = 2/11
=> tan(A) = (4 / 11) (1 - 4/121)
tan(A) = (4 / 11) (1 - 4/121)= (4 / 11) (117 / 121)
tan(A) = (4 / 11) (1 - 4/121)= (4 / 11) (117 / 121)= 4 * 121 / 11 * 117
tan(A) = (4 / 11) (1 - 4/121)= (4 / 11) (117 / 121)= 4 * 121 / 11 * 117= 44/117
Hope it will help you
Mark the brainliest
Answer:
1/11-cosecA
Step-by-step explanation:
cosecA +cotA=11
therefore,cotA=11-cosec A
As cotA=1/tan A
so 1/cotA=1/11-cosecA
=tan A=1/11-cosecA