Math, asked by preetkaur2091, 9 months ago

5. If the polynomial p(x) = x³- x²+ 3x + k is divided by (x - 1), the remainder obtainedis 3, then the value of k is​

Answers

Answered by Anonymous
12

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow p(x)=x^3-x^2+3x+k

\sf\dashrightarrow g(x)=x-1

\sf\implies x-1=0

\sf\implies x=1

\sf\dashrightarrow remainder\:obtained\:when\:p(x)\: get's\:divided\:by\:g(x)\:is\:3

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE\:OF\:K

\large\underline\bold{SOLUTION,}

\sf\therefore x^3-x^2+3x+k=3\:----[AS\:GIVEN\:]

\sf\implies (1)^3-(1)^2+3(1)+k=3

\sf\implies 1-1+3+k=3

\sf\implies \cancel{ 1} \: \cancel{-1}+3+k=3

\sf\implies 3+k=3

\sf\implies k=3-3

\sf\implies k=0

\large{\boxed{\bf{\star\:\: k=0 \:\: \star }}}

\large\underline\bold{\therefore \: THE\:VALUE\:OF\:'K'\:IS\:0}

____________________

Answered by ItzCaptonMack
0

\large\underline{\underline{\bold{\pink{\mathfrak{AnSwEr}}}}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow p(x)=x^3-x^2+3x+k

\sf\dashrightarrow g(x)=x-1

\sf\implies x-1=0

\sf\implies x=1

\sf\dashrightarrow remainder\:obtained\:when\:p(x)\: get's\:divided\:by\:g(x)\:is\:3

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE\:OF\:K

\large\underline\bold{SOLUTION,}

\sf\therefore x^3-x^2+3x+k=3\:----[AS\:GIVEN\:]

\sf\implies (1)^3-(1)^2+3(1)+k=3

\sf\implies 1-1+3+k=3

\sf\implies \cancel{ 1} \: \cancel{-1}+3+k=3

\sf\implies 3+k=3

\sf\implies k=3-3

\sf\implies k=0

\large{\boxed{\bf{\star\:\: k=0 \:\: \star }}}

\large\underline\bold{\therefore \: THE\:VALUE\:OF\:'K'\:IS\:0}

Similar questions