Math, asked by muskan74896, 6 months ago

5. In a triangle ABC, prove that
A B
С
cot — + cot
+ cot
(a+b+c)2
2 2 2
Prove that
a? +62 +62 Cot A + cot B+Cot C​

Attachments:

Answers

Answered by spiderman2019
0

Answer:

Step-by-step explanation:

There are few key formula used here around Properties of triangle:

Let A , B , C be the angles of the triangle and a , b , c be the length of sides opposite to respective angles.

Sine Rule:

a/SinA = b/SinB = c/Sinc = 2R  

Cosine Rule: a² = b² + c² - 2bcCosA = > CosA = b² + c² - a² / 2bc

Similarly, CosB = c² + a² - b² / 2ac, CosC = a² + b² - c² / 2ab.

Area of triangle in terms of Sine is

Δ = (1/2)bcSinA = (1/2)caSinB = (1/2)abSinC

Let us now calculate the values:

CotA = CosA/SinA

= 2bcCosA/2bcSinA  (∵ Multiply numerator and denominator by 2bc)

= b² + c² - a² / 4Δ   ( ∵ CosA = b² + c² - a² / 2bc => 2bcCosA = b² + c² - a²  

                                  ∵ Δ = (1/2)bcSinA => bcSinA = 2Δ)

Similarly we can calculate CotB and CotC,

=> CotB = c² + a² - b² / 4Δ

=> CotC = a² + b² - c² / 4Δ

let us calculate the half angles

CotA/2 = CosA/2 / SinA/2

             = 2Cos²A/2 / 2SinA/2CosA/2 (∵ Multiply numerator and  

                                                                  denominator by 2CosA/2)

              = 1 + CosA/SinA    (∵ Cos2A = 2Cos²A - 1 and Sin2A = 2SinACosA)

              =  [1 + b² + c² - a²/2bc] / 2Δ/bc

              = [2bc + b² + c² - a² / 2bc ] *  [bc/2Δ]

              = [2bc + b² + c² - a²] /4Δ

Similarly we can calculate CotB/2 and CotC/2,

=> CotB/2 = [2ca + c² + a² - b²] /4Δ

=> CotC/2 = [2ab + a² + b² - c²] /4Δ

R.H.S

CotA/2 + CotB/2 + CotC/2 / CotA + CotB + CotC

Numerator => CotA/2 + CotB/2 + CotC/2

= [2bc + b² + c² - a²] /4Δ + [2ca + c² + a² - b²] /4Δ +  [2ab + a² + b² - c²] /4Δ

= 1/4Δ [2bc + b² + c² - a² + 2ca + c² + a² - b² + 2ab + a² + b² - c²]

= (a + b + c )²/4Δ  ---------  (1)

Denominator => CotA + CotB + CotC

= b² + c² - a² / 4Δ + c² + a² - b² / 4Δ + a² + b² - c² / 4Δ

= 1/4Δ [b² + c² - a² + c² + a² - b² + a² + b² - c²]

= a² + b² + c²/4Δ ---------- (2)

Now (1) / (2)

[(a + b + c )²/4Δ] / [a² + b² + c²/4Δ]

=  (a + b + c )² / a² + b² + c²

= L.H.S

Hence Proved

Similar questions