5. In ▲ABC, <B = 115°and <C = 25°. Also, AP II BC and AQ is
the angle bisector of <BAC. What is the measure of <PAQ?
Please help Me
⭐
![](https://hi-static.z-dn.net/files/d6a/535612cf6d400a9c387754d53ab48f80.jpg)
Answers
ANSWER:
∠PAQ = 45°
Correct Question:
In ΔABC, ∠B = 115°and ∠C = 25°. Also, AP | BC and AQ is the angle bisector of ∠BAC. What is the measure of ∠PAQ?
Given:
- ∠B = 115°
- ∠C = 25°
- AP | BC
- AQ is the angle bisector of ∠BAC
To Find:
- ∠PAQ
Solution:
➞ ∠PBA + ∠ABQ = 180° ( linear pair)
➞ ∠PBA + 115° = 180°
➞ ∠PBA = 180° - 115°
➞ ∠PBA = 65° ...(1)
In ΔAPB
➞ ∠P + ∠PBA + ∠PAB = 180° ( Sum of all angles of a triangle is 180°)
➞ 90° + 65° + ∠PAB = 180° { Using (1) }
➞ 155° + ∠PAB = 180°
➞ ∠PAB = 180° - 155°
➞ ∠PAB = 25° ..(2)
AQ is angle bisector of ∠BAC, so,
➞ ∠BAQ = ∠QAC
➞ ∠BAQ = x
➞ ∠QAC = x
In ΔPAC
➞ ∠APC + ∠PCA + ∠CAP = 180° ( Sum of all angles of a triangle is 180°)
[ ∠PAB + ∠BAQ + ∠QAC = CAP]
➞ ∠APC + ∠PCA + ∠PAB + ∠BAQ + ∠QAC = 180°
➞ 90° + 25° + 25° + x + x = 180°
➞ 90° + 50° + 2x = 180°
➞ 140° + 2x = 180°
➞ 2x = 180 - 140°
➞ 2x = 40°
➞ x = 40/2
➞ x = 20°
∠BAQ = 20°
∠QAC = 20° ..(3)
[ ∠PAQ = ∠BAQ + ∠PAB ]
➞ ∠PAQ = 20° + 25° {using (2) and (3)}
➞ ∠PAQ = 45°