5. In fig , ray AE || ray BD ray AF is the bisector of ∠EAB and ray BC is bisector of ∠ABD Prove that line AF || line BC .
Answers
Answered by
12
─────────────────────
─────────────────────
✯ Gɪᴠᴇɴ -
Ray AE || Ray BD
Ray AF and ray BC are bisector of ∠EAB and ∠ABD
─────────────────────
✯ Tᴏ Pʀᴏᴠᴇ -
Ray AF || line BC
─────────────────────
✯ Pʀᴏᴏꜰ -
↝ Ray AE || Ray BD and AB is transversal.
↝ ∠EAB ≅ ∠ABD ... (i)... Alternate angles
↝ ∠FAB = ∠EAB ㅤㅤㅤㅤ... (ii)
ㅤㅤㅤㅤㅤㅤ ... ray AF is bisector of ∠EAB
↝ ∠ABC = ∠ABD
ㅤㅤㅤㅤㅤㅤ ... ray AF is bisector of ∠ABD
↝ ∠FAB = ∠ABC ㅤㅤㅤㅤ...from (i) (ii) and (iii)
↝ Line AF || line BC ㅤㅤㅤㅤ...Alternate Angle Test
─────────────────────
Similar questions