Math, asked by QueenBee01, 7 months ago

5. In fig , ray AE || ray BD ray AF is the bisector of ∠EAB and ray BC is bisector of ∠ABD Prove that line AF || line BC .

Answers

Answered by Anonymous
12

─────────────────────

\huge\bf{\underline{\underline{AnswEr}}}

─────────────────────

✯ Gɪᴠᴇɴ -

Ray AE || Ray BD

Ray AF and ray BC are bisector of ∠EAB and ∠ABD

─────────────────────

✯ Tᴏ Pʀᴏᴠᴇ -

Ray AF || line BC

─────────────────────

✯ Pʀᴏᴏꜰ -

↝ Ray AE || Ray BD and AB is transversal.

↝ ∠EAB ≅ ∠ABD ... (i)... Alternate angles

↝ ∠FAB =\frac{1}{2} ∠EAB ㅤㅤㅤㅤ... (ii)

ㅤㅤㅤㅤㅤㅤ ... ray AF is bisector of ∠EAB

↝ ∠ABC = \frac{1}{2} ∠ABD

ㅤㅤㅤㅤㅤㅤ ... ray AF is bisector of ∠ABD

↝ ∠FAB = ∠ABC ㅤㅤㅤㅤ...from (i) (ii) and (iii)

↝ Line AF || line BC ㅤㅤㅤㅤ...Alternate Angle Test

\huge\fbox{Hence \:Proved .}

─────────────────────

Similar questions