Math, asked by abhi31987, 1 year ago

5. In the adjoining figure, PQRS is a trapezium
in which PQ||SR and M is the midpoint of
PS. A line segment MN || PQ meets QR at N.
Show that N is the midpoint of QR.
1oc TLL:​

Answers

Answered by Shipra99
10

Answer:

The answer to this question is as follows

Attachments:
Answered by lublana
9

Answer with Step-by-step explanation:

PQRS is a parallelogram

M is the midpoint of PS.

MN is parallel to PQ

PQ is parallel to PS

Therefore, MN is parallel PS

In triangle SPQ,

M is the midpoint and ME is parallel to PQ (E lies on MN)

By converse of mid - segment theorem

E is the mid-point of SQ.

In triangle QRS

E is the midpoint of QS

EN is parallel to RS

By converse of mid segment theorem

N is mid point of QR

Hence, proved.

#Learns more:

https://brainly.in/question/6356495

Attachments:
Similar questions