Math, asked by fnma2150, 8 months ago

5. In the given figure, side BC of a triangle ABC
has been produced to D and CE II BA. If
<ABC = 65°, <ACE = 55°, find <BAC, <ACB
and <ECD.​

Attachments:

Answers

Answered by Snapskg730
2

Answer:

CE II BA

then

angle BAC = angle ACE ( alternate angles)

BAC = 55⁰

ABC + BAC + ACB = 180⁰

65⁰+55⁰+ACB =180⁰

120⁰ + ACB = 180⁰

ACB = 180⁰-120⁰

ACB = 60⁰

60+55+ECD = 180

115+ ECD = 180

ECD = 180-115

ECD = 65

follow me on brainly

follow me on brainly also on Instagram id on my profile

Answered by Anonymous
7

\huge\frak{Answer:-}

Given:-

  •  CE || BA ,
  •  \angle ABC = 65°
  •  \angle ACE = 55°

To Find:  \angle BAC , \angle ACB &  \angle ECD .

_______________...

\underline{\tt{\angle BAC:-}}

 \implies \angle BAC = \angle ACE

\bf{(Corresponding \ Angles)}

Or,

 \angle BAC = 55°

\underline{\tt{ACB:-}}

 \angle ABC + \angle BAC + \angle ACB = 180°

\bf{(Angle \ sum \ prop.)}

 \implies 65° + 55° + \angle BAC = 180°

 \implies 120° + \angle BAC = 180°

 \implies \angle BAC = 180° - 120°

 \implies \angle BAC = 60°

\underline{\tt{\angle ECD:-}}

 \angle BAC + \angle ABC = \angle ACD

\bf{(Sum \ of \ int. \ angles \ is \ equal \ to \ the \ ext. \ angle)}

 \implies 55° + 65° = \angle ACE + \angle ECD

 \implies 55° + 65° = 55° + \angle ECD

\implies \angle ECD = 65°

Similar questions