Math, asked by pranalilaxmanpatil, 7 months ago

5 m2 + 2m +1= 0
solve the quadratic equation​

Answers

Answered by Anonymous
65

Answer:

 \boxed{\mathfrak{m =  -  \frac{1}{5}  \pm \frac{2i}{5}}}

Step-by-step explanation:

 \sf Solve \:  for \:  m: \\ \sf \implies 5 m^2 + 2 m + 1 = 0 \\  \\  \sf Divide \:  both  \: sides \:  by \:  5:  \\ \sf \implies m^2 +  \frac{2m}{5}  +  \frac{1}{5}  = 0 \\  \\  \sf Subtract  \:  \frac{1}{5}  \:  from  \: both  \: sides: \\  \sf \implies m^2 +  \frac{2m}{5}  = - \frac{1}{5}  \\  \\  \sf Add  \: 1/25 \:  to  \: both  \: sides: \\  \sf \implies m^2 +  \frac{2m}{5}  +  \frac{1}{25}  = - \frac{1}{5}  +  \frac{1}{25}  \\  \\  \sf \implies  {m}^{2}  +  \frac{2m}{5}  +  \frac{1}{25}  =  \frac{ - 5 + 1}{25}  \\  \\  \sf \implies  {m}^{2}  +  \frac{2m}{5}  +  \frac{1}{25}  =  -  \frac{4}{25}  \\  \\  \sf Write  \: the  \: left  \: hand \:  side \:  as \:  a \:  square: \\  \sf \implies  {m}^{2}  +  \frac{m}{5}  +  \frac{m}{5}  +  \frac{1}{25}  =  -  \frac{4}{25}  \\  \\  \sf \implies m(m +  \frac{1}{5} ) +  \frac{1}{5} (m +  \frac{1}{5} ) =  -  \frac{4}{5}  \\  \\  \sf \implies  {(m +  \frac{1}{5} )}^{2}  =  -  \frac{4}{25}  \\  \\  \sf Take \:  the \:  square  \: root  \: of  \: both  \: sides: \\  \sf \implies  \sqrt{ {(m +  \frac{1}{5}) }^{2} }  =  \sqrt{ -  \frac{4}{25} }  \\  \\  \sf \implies m +  \frac{1}{5}  =  \pm \frac{2i}{5}  \\  \\   \sf Subtract \:   \frac{1}{5} \:   from  \: both  \: sides: \\  \sf \implies m =  -  \frac{1}{5}  \pm \frac{2i}{5}

Answered by Anonymous
4

\huge\underline\bold{AnSwEr,}

 \sf Solve \:  for \:  m: \\ \sf \implies 5 m^2 + 2 m + 1 = 0 \\  \\  \sf Divide \:  both  \: sides \:  by \:  5:  \\ \sf \implies m^2 +  \frac{2m}{5}  +  \frac{1}{5}  = 0 \\  \\  \sf Subtract  \:  \frac{1}{5}  \:  from  \: both  \: sides: \\  \sf \implies m^2 +  \frac{2m}{5}  = - \frac{1}{5}  \\  \\  \sf Add  \: 1/25 \:  to  \: both  \: sides: \\  \sf \implies m^2 +  \frac{2m}{5}  +  \frac{1}{25}  = - \frac{1}{5}  +  \frac{1}{25}  \\  \\  \sf \implies  {m}^{2}  +  \frac{2m}{5}  +  \frac{1}{25}  =  \frac{ - 5 + 1}{25}  \\  \\  \sf \implies  {m}^{2}  +  \frac{2m}{5}  +  \frac{1}{25}  =  -  \frac{4}{25}  \\  \\  \sf Write  \: the  \: left  \: hand \:  side \:  as \:  a \:  square: \\  \sf \implies  {m}^{2}  +  \frac{m}{5}  +  \frac{m}{5}  +  \frac{1}{25}  =  -  \frac{4}{25}  \\  \\  \sf \implies m(m +  \frac{1}{5} ) +  \frac{1}{5} (m +  \frac{1}{5} ) =  -  \frac{4}{5}  \\  \\  \sf \implies  {(m +  \frac{1}{5} )}^{2}  =  -  \frac{4}{25}  \\  \\  \sf Take \:  the \:  square  \: root  \: of  \: both  \: sides: \\  \sf \implies  \sqrt{ {(m +  \frac{1}{5}) }^{2} }  =  \sqrt{ -  \frac{4}{25} }  \\  \\  \sf \implies m +  \frac{1}{5}  =  \pm \frac{2i}{5}  \\  \\   \sf Subtract \:   \frac{1}{5} \:   from  \: both  \: sides: \\  \sf \implies m =  -  \frac{1}{5}  \pm \frac{2i}{5}

\huge{\purple{\bold{\boxed{\rm{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: }}}}}

Similar questions