Math, asked by reddypranitha57, 9 months ago

5. prove
1 + Sec A/sec A= sin^2 A/ 1- cos A​

Answers

Answered by amitkumar44481
5

Given :

 \tt\: \frac{1 +  \sec \: A }{ \sec \: A }  =  \frac{ { \sin}^{2} A}{1 -  \cos \: A }  \\

Solution :

Taking LHS,

 \tt\longmapsto  \frac{1 +  \sec \: A }{ \sec \: A }  \\

 \tt\longmapsto \frac{1 +  \frac{1}{ \cos A  } }{ \frac{1}{ \cos  A } }  \\

 \tt\longmapsto  \frac{ \cos  A   + 1}{1}  \\

 \tt\longmapsto  { \cos  A + 1 . } \\

\rule{90}1

Taking RHS,

 \tt\longmapsto \frac{1 -  { \cos  A }^{2} }{1 -  \cos   A } \\

 \tt \leadsto \fbox  {{ \sin }^{2}  \theta +   { \cos}^{2}  \theta = 1.} \\

 \tt \longmapsto \frac{(1 +  \cos A )(1 -  \cos  A ) }{1 -  \cos A  }  \\

 \tt\longmapsto1 +  \cos  A .

Hence Proved, LHS = RHS.

\rule{200}3

Some Identities

  • Sin²theta + Cos² theta = 1.
  • 1 + tan² theta = Sec² theta.
  • 1 + Cot² theta = Cosec² theta.
Similar questions