Math, asked by sraosesetti, 9 months ago

click on the photo u can see the question
please answer both the questions​

Attachments:

Answers

Answered by Anonymous
9

Solution

Given:-

In right ABC

  • AB = x + 5.
  • BC = x
  • CA = 25

Find:-

  • Value of x
  • Area of right ∆ ABC

Explanation

In right ∆ ABC ,

By Pythagoras's Theorem

★ (Hypotenuse)²= (perpendicular)²+(Base)²

Or,

➠ AC² = AB² + BC²

➠ 25² = (x+5)² + x²

➠ 625 = ( x² + 25 + 10x ) + x²

➠ 2x² + 10x - 600 = 0

➠ x² + 5x - 300 = 0

➠x² + 20x - 15x - 300 = 0

➠ x (x + 20)-15(x + 20) = 0

➠(x-15)(x+20) = 0

➠ (x-15) = 0. Or, (x+20) = 0

➠x = 15. Or, x = -20

But, length is always in positive .

So, x = -20 is nigligible

Then Take , x = 15

So, Now calculate side of right ∆ ABC

  • perpendicular (AB) = (x+5) = (15+5) = 20 unit
  • Base ( BC ) = x = 15 unit

Now, calculate area of right ABC

★ Area of right ∆ ABC = 1/2 . (Height ).(Base)

Where,

  • Base = 15
  • Height = 20

➠ Area of right ∆ ABC = 1/2 . (15) . (20)

➠ Area of right ∆ ABC = 15 × 10

➠ Area of right ∆ ABC = 150 unit²

Hence:-

  • Value of x = 10
  • area of right ∆ABC = 150 unit²
Answered by amitkumar44481
4

AnsWer :

Area of triangle be 150 unit².

and it's sides,

  • 20 unit.
  • 15 unit.
  • 25 unit.

Given :

  • Perpendicular Sides be AB ( x + 5 ).
  • Hypotenuse Sides be 25.
  • Base sides be BC x.

Solution :

We have,

  • A triangle with angle 90° at angle B.

Let's Apply Pythagoras theorem,

 \tt\longmapsto \:  {H}^{2}  =  {P}^{2}   +  {B}^{2} .

 \tt \longmapsto {(5)}^{2}  =  {x}^{2}  +  {(x + 5)}^{2} .

\tt\longmapsto 625 =  {x}^{2}  +  {x}^{2}  + 25 + 10x.

\tt\longmapsto 625 = 2 {x}^{2}  + 10x + 25.

\tt\longmapsto 0 =  {2x}^{2}  + 10x - 600.

\tt\longmapsto0 =   {x}^{2}  + 5x - 300.

\tt\longmapsto 0 =  {x}^{2}  + 20x - 15x - 300.

\tt\longmapsto  x(x + 20) - 15(x + 20) = 0.

\tt\longmapsto (x - 15)(x + 20) = 0.

Either,

\tt\mapsto x - 15 = 0.

\tt\mapsto x = 15.

Or,

\tt\mapsto x + 20 = 0.

\tt\mapsto x =  - 20.

Here, negative ignore.

\tt\mapsto \red{ x \neq - 20.}

\rule{120}1

Now,Our Sides of triangle be.

  • Perpendicular Sides be x + 5.

\tt\mapsto x + 5.

\tt\mapsto 15 + 5.

\tt\mapsto 20.

And,

  • Base of triangle be x.

\tt\mapsto x

\tt\mapsto 15.

\rule{200}3

Area of triangle = 1/2 Base * Height.

\tt\longmapsto  \frac{1}{2}  \times 15 \times 20.

\tt\longmapsto  15 \times 10

\tt\longmapsto 150.

Therefore, the sides of triangle be,20 , 15 and 25 and area of triangle be 150 unit².

Attachments:
Similar questions