Math, asked by logesh70, 4 months ago

5. Prove that 2tan80° = tan85° -tan 5°​

Answers

Answered by Anonymous
157

 \large \underline \bold{Solution}:-

\rm{\: \: \: \: \: \: \: \: \: tan \: 80}

\rm{tan(85 \: - \: 5)}

 \small \underline \bold{We \: know \: that}:-

\rm{tan(A - B) \: = \: \dfrac{tanA \: - \: tanB}{1 \: + \: tanA tanB}}

\rm{So \: ,}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: tan85 tan5}}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: tan(90 - 5) tan5}}

As we know -

\rm{tan(90 \: - \: \theta) \: = \: Cot \theta}

\rm{then \: ,}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: Cot5 tan5}}

now ,

\rm{tan \theta\times Cot \theta \: = \: 1}

\rm{So \: - }

\rm{\dfrac{tan 85 \: - \: tan5}{1 + 1}}

\rm{\dfrac{tan85 \: - \: tan5}{2}}

\rm{Now \: ,}

\rm{as \: we \: got \: So \: , \: we \: can \: say \: -}

\rm{tan80 \: = \: \dfrac{(tan85 \: - \: tan5)}{2}}

\rm{2tan80 \: = \: (tan85 \: - \: tan5)}

 \large \underline \bold{HENCE \: PROOF}


suraj5070: hlo.
suraj5070: y?
Anonymous: Nicee!
Anonymous: Correct your spelling mistake in your answer Proved* instead of proof
Answered by Anonymous
2

Answer:

\large \underline \bold{Solution}

\rm{tan(A - B) \: = \: \dfrac{tanA \: - \: tanB}{1 \: + \: tanA tanB}}

Math

5 points

2.0

32

:-

\rm{\: \: \: \: \: \: \: \: \: tan \: 80}

\rm{tan(85 \: - \: 5)}

\small \underline \bold{We \: know \: that}

:-

\rm{So \: ,}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: tan85 tan5}}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: tan(90 - 5) tan5}}

As we know -

\rm{tan(90 \: - \: \theta) \: = \: Cot \theta}

\rm{then \: ,}

\rm{\dfrac{tan85 \: - \: tan5}{1 \: + \: Cot5 tan5}}

now ,

\rm{tan \theta\times Cot \theta \: = \: 1}

\rm{So \: - }

ANSWER

\rm{\dfrac{tan 85 \: - \: tan5}{1 + 1}}

Similar questions