Math, asked by devananda56, 1 year ago

5 Raised to 3 ÷ 5 raised to 2m-1 = 1, then find m
 {5}^{3}  \div  {5}^{2m - 1}  = 1

Answers

Answered by Anonymous
5
Answer :


given \: equation \:  =  \:  {5}^{3}  \div  {5}^{2m - 1}  = 1 \\  \\   =  >  \: firstly \: calculate \: the \: quotient \:  \\  \\  =  >  \:  {5}^{3 - (2m - 1)}  = 1 \\  \\  =  >  \:  {5}^{3 - 2m - 1}  = 1 \\  \\  =  >  \:  {5}^{4 - 2m}  = 1 \\  \\  =  >  \:  {5}^{ - 2m + 4}  = 1  \\  \\  =  >  \: write \: the \: no. \: in \: the \: exponental \: form \: with \: base \: 5 \\  \\  =  >  \:  {5}^{ - 2m + 4}  =  {5}^{0}  \\  \\  =  >  \: bases \: are \: same \: so \: exponents \: can \: be \: equal \\  \\  =  >  \:  - 2m + 4 = 0 \\  \\  =  >  \: now \: find \: out \: the \: value \: of \: m \:  \\  \\  =  >  \:  - 2m =  - 4 \\  \\  =  >  \: m =  \frac{4}{2}  \\  \\  =  >  \: m  = 2


Hope it would help you

himanshusingh52: hii
Anonymous: yes
himanshusingh52: How are you?
Answered by Anonymous
5
\underline{\bold{Given:-}}

 {5}^{3} \div {5}^{2m - 1} = 1

\underline{\bold{To\:find:-}}

Value of m.

\underline{\bold{Solution:-}}

 {5}^{3} \div {5}^{2m - 1} = 1 \\ \\\bold{ When \: two \: numbers \: of \: same \: base \: are} \\ \bold{divided \: then \: there \: powers \: get} \\ \bold{subtracted. i.e.}\\ \bold{ {2}^{x} \div {2}^{y} = {2}^{x - y} }\\ \\ {5}^{3 - (2m - 1)} = 1 \\ \\ {5}^{4 - 2m} = {5}^{0 } \\ \\ \bold{They \: have \: same \: base \: so \: comparing} \\ \bold{there \: powers} \\ \\ 4 - 2m = 0 \\ \\ 4 = 2m \\ \\ m = \frac{4}{2} \\ \\ m = 2

⭐HOPE IT MAY HELP YOU⭐
Similar questions