Math, asked by riyonthoduka, 9 months ago

5 root 5 x square +30 x + 8 root 5

Attachments:

Answers

Answered by nandita912
1

Answer:

see the attachment......and next time ask question correctly.......

Step-by-step explanation:

please follow me and mark as a brainalist......

Attachments:
Answered by aarjavgupta
0

Answer: Given,

5\sqrt{5}x^{2}+ 30x + 8\sqrt{5}=0

Step-by-step explanation: Now, we will solve it by complete square          method.

5\sqrt{5}x^{2}+ 30x +8\sqrt{5}=0

Multiply the equation by 5\sqrt{5}.

So, we have

25\sqrt{25} x^{2}+150\sqrt{5}x+40\sqrt{25}=0

(5\sqrt{5}x) ^{2}+(2)(5\sqrt{5}x)(15)+(15)^{2}-(15)^{2}+(40)(5)=0

(5\sqrt{5}x+15) ^{2}-(225)+(200)=0

5\sqrt{5}x+15 = \sqrt{25}      and      →5\sqrt{5}x+15 = -\sqrt{25}

x=5-15/5\sqrt{5}         and      →x=-5-15/5\sqrt{5}

x=(-10/5\sqrt{5})(5\sqrt{5}/5\sqrt{5})       and      →x=(-20/5\sqrt{5})(5\sqrt{5}/5\sqrt{5})    

x=-50\sqrt{5}/125          and       →x=-100\sqrt{5}/125

x=-2\sqrt{5}/5                and      →x= 4\sqrt{5}/5

So, the values of x are above.

We can also solve it by factorisation and equation.

Similar questions