Math, asked by agarwalsaket2002, 2 months ago

5. Verify Euler's Theorem when u = x2 – 2xy + 5y2​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Euler's Theorem states that

If u(x, y) is a homogeneous function of degree n, then

 \sf \: x \: \dfrac{\partial \: u}{\partial \: x}  + y \: \dfrac{\partial \: u}{\partial \: y}  = n \: u

Now,

Given function is

\rm :\longmapsto\:u =  {x}^{2}  - 2xy +  {5y}^{2}  -  -  - (1)

\rm :\longmapsto\:u =  {x}^{2}{\bigg(1 - \dfrac{2y}{x}  + 5 \: \dfrac{ {y}^{2} }{ {x}^{2} }  \bigg) }

\rm :\implies\:u \: is \: a \: homogeneous \: function \: of \: degree \: 2

So,

we have to verify that

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \:  \: \boxed{ \sf \: x \: \dfrac{\partial \: u}{\partial \: x} + y \dfrac{\partial \: u}{\partial \: y}  = 2u}

Now,

Differentiate partially equation (1), w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial \: u}{\partial \: x}  = 2x - 2y -  -  - (2)

Differentiate partially equation (1) w. r. t. y, we get

\rm :\longmapsto\:\dfrac{\partial \: u}{\partial \: y}  =  - 2x + 10y -  -  - (3)

Now,

Consider,

\rm :\longmapsto\: x \: \dfrac{\partial \: u}{\partial \: x} + y \dfrac{\partial \: u}{\partial \: y}

 \sf \:  \:  \:  =  \:  \:  \: x(2x - 2y) + y( - 2x + 10y)

 \sf \:  \:  \:  =  \:  \:  \:  {2x}^{2}  - 2xy - 2xy +  {10y}^{2}

 \sf \:  \:  \:  =  \:  \:  \:  {2x}^{2}  - 4xy +  {10y}^{2}

 \sf \:  \:  \:  =  \:  \:  \:  2({x}^{2}  - 2xy +  {5y}^{2})

 \sf \:  \:  \:  =  \:  \:  \: 2u

\bf\implies \: x \: \dfrac{\partial \: u}{\partial \: x} + y \dfrac{\partial \: u}{\partial \: y} = 2u

{\boxed{\boxed{\bf{Hence, verified}}}}

Additional Information :-

If u(x, y) is a homogeneous function of degree n, then

 \boxed{ \sf \: x\dfrac{ {\partial}^{2}u }{ {\partial \: x}^{2}} + y\dfrac{ {\partial}^{2}u}{\partial \: x \: \partial \: y} = (n - 1)\dfrac{\partial \: u}{\partial \: x}  }

 \boxed{ \sf \: y\dfrac{ {\partial}^{2}u }{ {\partial \: y}^{2}} + x\dfrac{ {\partial}^{2}u}{\partial \: x \: \partial \: y} = (n - 1)\dfrac{\partial \: u}{\partial \: y}  }

 \boxed{ \sf \:  {x}^{2}\dfrac{ {\partial}^{2}u }{ {\partial \: x}^{2}} + 2xy\dfrac{ {\partial}^{2}u}{\partial \: x \: \partial \: y} +  {y}^{2}\dfrac{ {\partial}^{2}u }{ {\partial \: y}^{2}} = n(n - 1)u}

Similar questions