5. Where do you think the skies could begin for the bird?
A FLIGHT WITH THE MOON ON THEIR WINGS Unit 6
TNSCERT Class 10
Answers
Answered by
0
for birds there sky is that range where they can not go and want to go because that range is like there heaven
Answered by
0
Anyone watching the autumn sky knows that migrating birds fly in a V formation, but scientists have long debated why. A new study of ibises finds that these big-winged birds carefully position their wingtips and sync their flapping, presumably to catch the preceding bird’s updraft—and save energy during flight.
There are two reasons birds might fly in a V formation: It may make flight easier, or they’re simply following the leader. Squadrons of planes can save fuel by flying in a V formation, and many scientists suspect that migrating birds do the same. Models that treated flapping birds like fixed-wing airplanes estimate that they save energy by drafting off each other, but currents created by airplanes are far more stable than the oscillating eddies coming off of a bird. “Air gets pretty darn wiggy behind a flapping wing,” says James Usherwood, a locomotor biomechanist at the Royal Veterinary College at the University of London in Hatfield, where the research took place.
The study, published online today in Nature, took advantage of an existing project to reintroduce endangered northern bald ibises (Geronticus eremita) to Europe. Scientists used a microlight plane to show hand-raised birds their ancestral migration route from Austria to Italy. A flock of 14 juveniles carried data loggers specially built by Usherwood and his lab. The device’s GPS determined each bird’s flight position to within 30 cm, and an accelerometer showed the timing of the wing flaps.
Hope it will help you!!!
There are two reasons birds might fly in a V formation: It may make flight easier, or they’re simply following the leader. Squadrons of planes can save fuel by flying in a V formation, and many scientists suspect that migrating birds do the same. Models that treated flapping birds like fixed-wing airplanes estimate that they save energy by drafting off each other, but currents created by airplanes are far more stable than the oscillating eddies coming off of a bird. “Air gets pretty darn wiggy behind a flapping wing,” says James Usherwood, a locomotor biomechanist at the Royal Veterinary College at the University of London in Hatfield, where the research took place.
The study, published online today in Nature, took advantage of an existing project to reintroduce endangered northern bald ibises (Geronticus eremita) to Europe. Scientists used a microlight plane to show hand-raised birds their ancestral migration route from Austria to Italy. A flock of 14 juveniles carried data loggers specially built by Usherwood and his lab. The device’s GPS determined each bird’s flight position to within 30 cm, and an accelerometer showed the timing of the wing flaps.
Hope it will help you!!!
Similar questions