Math, asked by Ashishreads, 1 year ago

5^x+5^x-1=750,find x

Answers

Answered by lucky091
121
5^x+5^x-1=750
5^x+5^x-1= 5⁴+5³
compare power because bases are equal
X-1= 3.= X= 4

; x=4
Answered by mysticd
210

Answer:

 Value \: of \: x = 4

Step-by-step explanation:

Given \\5^x+5^{x-1}=750

\implies 5^{x}+\frac{5^{x}}{5}=750

By \: Exponential \:Law:\\a^{m-n}= \frac{a^{m}}{a^{n}}

\implies 5^{x}[1+\frac{1}{5}]=750

\implies 5^{x}[\frac{5+1}{5}]=750

\implies 5^{x}\times \frac{6}{5}=750

\implies 5^{x}=750 \times \frac{5}{6}

\implies 5^{x}= 125 \times 5

\implies 5^{x}=5^{3}\times 5

\implies 5^{x}=5^{4}

\implies x = 4

By, Exponential\: Law :\\If \: a^{m}=a^{n}\: then\: m=n

Therefore,

 Value \: of \: x = 4

•••♪

Similar questions