Math, asked by ravi34287, 1 year ago

❤ 50 points❤ please answer with explanation

Attachments:

Answers

Answered by abdul143
13
 \: \: \: \: \: \: \: \: \red{ \huge \frak{ Hola! \: User}}
 <t> <font color = "red">
=> SOLUTION :

sin@ = -5/13 (given)

we know that :-

sin@ = p/h = -5/13

by using Pythagoras theorem we will find the base of the triangle.

=> h² = b² + p²

=> (AC)² = (BC)² + (AB)²

=> (13)² = (BC)² + (-5)²

=> 169 = (BC)² + 25

=> (BC)²= 169 - 25

=> BC = √144

=> BC = 12

this all are in third quard so, only tan@ and cot@ will in possitive sign .

=> Given Equation

=> 5cot²@ +12tan@ +13cosec@ = ?

=> we know the trigonometric values

=> cot@ = b/p = 12/5

=> tan@ = p/b = 5/12

=> cosec@ = h/p = 13/-5 = -13/5

let's solve this =>

=> 5 × 12/5 + 12× 5/12 + 13× -13/5

=> 12 + 5 - 169/5

=> 60+ 25 - 169/5

=> 85-169/5

=> -84/5 your answer

=> 180°< @ < 270°

=> this is the third quard so,
Attachments:

abdul143: 13
abdul143: 12
abdul143: hey bro please tell me
abdul143: 12 is the correct answer
abdul143: bata na
Answered by TPS
8

 \text{given that} \:  {180}^{o} &lt;  \theta &lt;  {270}^{o}   \\  \\ \text{so} \:  \theta \:  \text{ lies in third quadrant}

In third quadrant, only tan and cot functions are positive. Rest functions are negative.
___________________________

We are given sin value. We need the cot, tan and cosec value. So if we find the cos value, we can solve it.

 \sin( \theta)  =  \frac{ - 5}{13} \\  \\ we \: know:  \:  { \sin( \theta) }^{2}  +  { \cos( \theta) }^{2}  = 1 \\  \\  \cos( \theta)   =  \sqrt{1 -   { \sin( \theta) }^{2}}  \\  \\ \cos( \theta)   =  \sqrt{1 - { (\frac{5}{13}) }^{2} }\\  \\ \cos( \theta)   =  \sqrt{1 -  \frac{25}{169}} =  \sqrt{ \frac{169 - 25}{169} }  \\  \\ \cos( \theta)   =  \sqrt{ \frac{144}{169}  }\\  \\ \cos( \theta)   =  -  \frac{12}{25} \\  ( \text{becuse cos is  - ve in 3rd quadrant})
____________________________

\text{Find all required values:}

 \cot( \theta)  =  \frac{ \cos( \theta) }{ \sin(\theta) }  =  \frac{ \frac{ - 12}{13} }{ \frac{ - 5}{13} }  =  \frac{ - 12}{13}  \times  \frac{13}{ - 5}  =  \frac{12}{5}  \\

 \tan(\theta)  =  \frac{1}{ \cot( \theta) }  =  \frac{1}{ \frac{12}{5} }  =  \frac{5}{12}  \\

 \cosec( \theta)  =  \frac{1}{ \sin( \theta) }  =  \frac{1}{ \frac{ - 5}{13} }  =  \frac{ - 13}{5}  \\
___________________________

5 { \cot( \theta) }^{2}  + 12 \tan( \theta)  + 13 \cosec( \theta)  \\  \\  = 5 \times  { (\frac{12}{5} )}^{2}  + 12 \times  \frac{5}{12}  + 13 \times ( \frac{ - 13}{5} ) \\  \\  = 5 \times  \frac{144}{25} + \:  5 \:  -  \frac{  169}{5}  \\  \\  =  \frac{144}{5} + \:  5 \:  -  \frac{  169}{5} \\  \\  =  \frac{144 - 169}{5}  + 5 \\  \\  =  \frac{ - 25}{5}  + 5 \\  \\  =  - 5 + 5 \\  \\  =  \boxed{ \huge{0}}
Similar questions