Math, asked by suruchipiplani981312, 11 months ago

50 points
please solve these questions
I will mark be brainly if you gave me correct answer
no spam allowed​

Attachments:

Answers

Answered by brainlyofficial11
52

☯︎ ɴsʀ

  • n = term number
  • Sn = sum of first n terms
  • a = First term
  • an = nth term
  • l = last term
  • d = common difference

here, we will use following fomulas,

 \underline{  \boxed{ \red{\bold{a_{n} =a + (n - 1)d }}}}

 \underline{ \boxed{ \red{ \bold{S_{n}  =  \frac{n}{2}  \{2a + (n - 1)d \}}}}}

 {\underline{ \boxed{ \red{ \bold{S_{n}  =  \frac{n}{2} (a + l) }}}}}

_________________________

viii) to find : value of first term and n

we have,

  • an = 4
  • d = 2

  \bold{: \implies 4 = a + (n - 1)2 }  \:  \:  \:  \: \\  \\  \bold{ :  \implies 4 = a + 2n - 2} \:  \:  \:  \: \:  \:  \:  \:   \\  \\  \bold{ :  \implies  4 + 2 = a + 2n} \:  \:   \:  \:  \:  \: \:  \:  \\  \\  \bold{ :  \implies a + 2n = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies a = 6 - 2n}........(i)

and

we have,

  • Sn = -14
  • d = 2

  \bold{: \implies  - 14 =  \frac{n}{2} \{2a + (n - 1)2 \}  } \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies  - 14 =  \frac{n}{ \cancel2}   \cancel2(a + n - 1)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{ : \implies  - 14 = n(a + n - 1).........(ii)}

we get two equations,

  • a = 6 - 2n .........(i)
  • -14 = n(a + n -1) ........(ii)

now, substitute the value of a from (i) in (ii)

➪ -14 = n ( 6 - 2n + n - 1 )

➪ -14 = n ( 5 - n )

➪ - 14 = 5n - n²

➪ n² - 5n - 14 = 0

now, solve this quadratic equation.

n² - 5n - 14 = 0

➪ n² - 7n + 2n - 14 = 0

➪ n(n - 7) + 2(n - 7) = 0

➪ (n - 7) (n + 2) = 0

➪ n - 7 = 0 and n + 2 = 0

➪ n = 7 and n = -2(not possible)

now, substitute the value of n in (i)

➪ a = 6 - 2 × 7

➪ a = 6 - 14

➪ a = -8

hence, value of n is 7 and a is -8

__________________________

ix) to find : common difference

we have,

  • a = 3
  • n = 8
  • Sn = 192

 \bold{ :  \implies 192 =  \cancel \frac{8}{2}  \{2 \times 3+ (n - 1)d \}} \\  \\  \bold{ : \implies192 = 4 \{3 + 3 + (n - 1)d \} } \\  \\  \bold{ :  \implies   \cancel\frac{192}{4} = 3  + a_{n} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies 48 = 3 +a_{n} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies  a_{n} = 48 - 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies \boxed{ \bold{ a_{n} = 45}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now,

an = a + (n - 1)d

➪ 45 = 3 + (8 - 1)d

➪ 45 = 3 + 7d

➪ 7d = 45 - 3

➪ 7d = 42

➪ d = 42/7

➪ d = 6

so, value of d is 6

__________________________

x) to find : first term

we have,

  • l = 28
  • Sn = 144
  • n = 9

   \bold{:   \implies 144 =  \frac{9}{2}(a + 28) } \:  \\  \\  \bold{ : \implies  \frac{ \cancel{144} \times 2}{ \cancel{9}}   = a + 28} \\  \\  \bold{ : \implies a  + 28 = 16 \times 2 } \:  \:  \:  \\  \\  \bold{ :  \implies a = 32 - 28} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \bold{  : \implies  \boxed{ \bold{a = 4}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of a is 4

Answered by XxmiragexX
50

☯︎ ᴀɴsᴡᴇʀ

  • n = term number
  • Sn = sum of first n terms
  • a = First term
  • an = nth term
  • l = last term
  • d = common difference

here, we will use following fomulas,

 \underline{  \boxed{ \red{\bold{a_{n} =a + (n - 1)d }}}}

 \underline{ \boxed{ \red{ \bold{S_{n}  =  \frac{n}{2}  \{2a + (n - 1)d \}}}}}

 {\underline{ \boxed{ \red{ \bold{S_{n}  =  \frac{n}{2} (a + l) }}}}}

_________________________

viii) to find : value of first term and n

we have,

  • an = 4
  • d = 2

  \bold{: \implies 4 = a + (n - 1)2 }  \:  \:  \:  \: \\  \\  \bold{ :  \implies 4 = a + 2n - 2} \:  \:  \:  \: \:  \:  \:  \:   \\  \\  \bold{ :  \implies  4 + 2 = a + 2n} \:  \:   \:  \:  \:  \: \:  \:  \\  \\  \bold{ :  \implies a + 2n = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies a = 6 - 2n}........(i)

and

we have,

Sn = -14

d = 2

  \bold{: \implies  - 14 =  \frac{n}{2} \{2a + (n - 1)2 \}  } \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies  - 14 =  \frac{n}{ \cancel2}   \cancel2(a + n - 1)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{ : \implies  - 14 = n(a + n - 1).........(ii)}

we get two equations,

a = 6 - 2n .........(i)

-14 = n(a + n -1) ........(ii)

now, substitute the value of a from (i) in (ii)

➪ -14 = n ( 6 - 2n + n - 1 )

➪ -14 = n ( 5 - n )

➪ - 14 = 5n - n²

➪ n² - 5n - 14 = 0

now, solve this quadratic equation.

n² - 5n - 14 = 0

➪ n² - 7n + 2n - 14 = 0

➪ n(n - 7) + 2(n - 7) = 0

➪ (n - 7) (n + 2) = 0

➪ n - 7 = 0 and n + 2 = 0

➪ n = 7 and n = -2(not possible)

now, substitute the value of n in (i)

➪ a = 6 - 2 × 7

➪ a = 6 - 14

➪ a = -8

hence, value of n is 7 and a is -8

__________________________

ix) to find : common difference

we have,

  • a = 3
  • n = 8
  • Sn = 192

 \bold{ :  \implies 192 =  \cancel \frac{8}{2}  \{2 \times 3+ (n - 1)d \}} \\  \\  \bold{ : \implies192 = 4 \{3 + 3 + (n - 1)d \} } \\  \\  \bold{ :  \implies   \cancel\frac{192}{4} = 3  + a_{n} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies 48 = 3 +a_{n} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies  a_{n} = 48 - 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies \boxed{ \bold{ a_{n} = 45}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now,

an = a + (n - 1)d

➪ 45 = 3 + (8 - 1)d

➪ 45 = 3 + 7d

➪ 7d = 45 - 3

➪ 7d = 42

➪ d = 42/7

➪ d = 6

so, value of d is 6

__________________________

x) to find : first term

we have,

  • l = 28
  • Sn = 144
  • n = 9

   \bold{:   \implies 144 =  \frac{9}{2}(a + 28) } \:  \\  \\  \bold{ : \implies  \frac{ \cancel{144} \times 2}{ \cancel{9}}   = a + 28} \\  \\  \bold{ : \implies a  + 28 = 16 \times 2 } \:  \:  \:  \\  \\  \bold{ :  \implies a = 32 - 28} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \bold{  : \implies  \boxed{ \bold{a = 4}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of a is 4

Similar questions